План–конспект урока по физике на тему: «Генерирование электрической энергии. Трансформаторы

МОУ "СОШ имени Героя Советского Союза З.И.Маресевой с. Черкасское Вольского района Саратовской области"

План–конспект урока по физике

на тему: «Генерирование электрической энергии. Трансформаторы»

Выполнил учитель физики

А.А. Лысов

Цель: показать преимущества электрической энергии перед другими видами энергии; дать учащимся понятие о принципиальном устройстве промышленного генератора переменного тока; изучить назначение, устройство и принцип действия трансформатора.

Оборудование: модель генератора и трансформатора.

Ход урока

I . Орг. Момент.

II . Сообщение темы, цели урока. Работа над новым материалом. (слайд 1,2)

1. Применение электрической энергии в народном хозяйстве и быту. Преимущества электрической энергии перед другими видами энергии и преимущества переменного тока по сравнению с постоянным.

Преимущества перед другими видами энергий:

А). передавать на огромные расстояния с малыми потерями

Б) удобно распределять между потребителями

В) легко превращать в любые другие виды энергий: механическую, внутреннюю, энергию света и т. д.

Преимущество переменного тока перед постоянным: напряжение и силу тока можно преобразовывать почти без потерь энергии. Эти преобразования необходимы во многих устройствах, особенно при передачи на большие расстояния.

Поэтому познакомимся с устройствами, вырабатывающие электрический ток-генераторами и устройствами преобразующими его- трансформаторы.

2. Генератор

Генератор - устройство, преобразующее энергию того или иного вида в электрическую энер гию (гальванические элементы, электростатические машины, термобатареи, солнечные батареи).

Преобладающую роль в наше время играют электромеханиче ские индукционные генераторы переменного тока, в которых механическая энергия превращается в электрическую. Их действие основано на явлении электромагнитной индукции. Такие генераторы имеют сравнительно простое устройство и позволяют по лучать большие токи при достаточно высоком напряжении.

3. Устройство генератора переменного тока и его работа.

Генератор состоит: (слайд 3,4)

А) подвижная часть ротор.

Б) неподвижная часть статор.

Насаженный на вал ротор представляет собой электромагнит или магнит (индуктор), который вращается внутри статора. В пазах статора уложены проводящие «контуры- обмотки» (якорь), в которых при вращении ротора переменное магнитное поле порождает вихревое электрическое поле. Возникает электродвижущая сила, в обмотках возникает индукционный ток. Этот ток передаётся от генератора во внешнюю цепь.

Если ротор является электромагнитом, то он снабжается контактными кольцами и щётками-неподвижными пластинами, прижатыми к кольцам, осуществляющим связь обмотки ротора с внешней цепью. Через скользящие контакты к вращающемуся электромагниту подводится слабый ток, вырабатываемый отдельным генератором постоянного тока (возбудителем), расположенным на том же валу.

Генератор переменного тока . Генератор тока – устройство, преобразующее механическую энергию в электрическую.

Основные части генератора:

    Индуктор – устройство, создающее МП. Якорь – обмотка, в которой индуцируется ЭДС. Кольца со щетками – устройство, которым снимают с вращающихся частей индукционный ток или подают ток питания электромагнитом.
ЭДС, индуцируемая в последовательно соединенных витках, будет складываться из суммы ЭДС в каждом из них, поэтому обмотка якоря состоит из множества витков. Генератор состоит из неподвижной части - статора и подвижной части - ротора . Обычно на роторе располагаются электромагниты с полюсами N и S. Их обмотка, называемая обмоткой возбуждения, питается через кольца и щетки от источника постоянного тока. В пазах статора, собранного из стальных листов, находятся проводники обмотки статора. Они соединены друг с другом последовательно поочередно с передней и с задней сторон статора. Для технических целей применяется переменный ток синусоидальной формы с частотой 50 Гц, для этого ротор должен вращаться с частотой 50 об/с. Чтобы уменьшить частоту вращения, увеличивают число пар полюсов индуктора. ν = nf , n число пар полюсов, f - частота вращения ротора.

Трансформатор.

Впервые трансформаторы были использованы в 1878 г. русским учёным П.Н. Яблочковым для питания изобретённых им ""электрических свечей» – нового в то время источника света. Идея П.Н. Яблочкова была развита сотрудником Московского университета И.Ф. Усагиным, сконструировавшим усовершенствованный трансформатор. (Демонстрация разборного универсального трансформатора). С помощью разборного универсального трансформатора рассматриваем устройство трансформатора. Трансформатор состоит из замкнутого сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками. Одну из обмоток, называемую первичной, подключают к источнику переменного напряжения. Вторую обмотку, к которой присоединяют «нагрузку», то есть приборы и устройства, потребляющие электроэнергию, называют вторичной. Зарисовать в тетрадь схему устройства трансформатора, его условное обозначение (планшет)
Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Сердечник из трансформаторной стали концентрирует магнитное поле, так, что магнитный поток существует только внутри сердечника и одинаков во всех его сечениях. В первичной обмотке, имеющей n 1 витков, полная ЭДС индукции е 1 равна n 1 е.Во вторичной обмотке полная ЭДС е 2 равна n 2 е, следовательно Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен ЭДС индукции, значит: ,

Мгновенные значения ЭДС е 1 и е 2 изменяются синфазно (одновременно достигают максимума и одновременно проходят через нуль.) Поэтому отношение можно заменить:


Величину k называют коэффициентом трансформации . При k > 1, - трансформатор – понижающий. При k

Вывод о назначении трансформатора

    Наиболее важное применение трансформатора - это передача электрической энергии на большое расстояние. Большое практическое применение трансформатор находит в электросварке. Образование двух противоположных магнитных потоков в сердечнике полностью нагруженного трансформатора положено в основу устройства современного бытового электрического звонка. В радиотехнике для понижения напряжения (силовые трансформаторы).
КПД трансформатора ɳ = * 100%, или ɳ= I 2 U 2 / I 1 U 1 . Р 2 -мощность вторичной обмотки, Р 1 -мощность первичной обмотки. В современных мощных трансформаторах суммарные потери 2-3%. КПД составляет 97-98%.

Вопрос:
1. Какой электрический ток называется переменным?
1) Электрический ток, периодически меняющийся со временем по модулю и направлению
2) Электрический ток, периодически меняющийся со временем
3) Электрический ток, периодически меняющийся по модулю
4) Электрический ток, периодически меняющийся со временем по направлению

2. Где используют переменный электрический ток?
1) в домах. 2) квартирах. 3) на производстве. 4) на автомобилях.
5) велосипедах.

3. Почему генераторы переменного тока называют индукционными?
1) их действие основано на явлении электрического тока
2) их действие основано на магнитном действии
3) их действие основано на явлении электромагнитной индукции
4) их действие основано на явлении постоянного магнита:

4. Из чего состоит электромеханический индукционный генератор?
1) генератора. 2) станины. 3) статора.
4) ротора. 5) полукольца. 6) щетки.
5. Какая часть индукционного генератора подвижная?
1) статор. 2) ротор. 3) щетки. 4) обмотка.

6. Какая часть индукционного генератора не подвижна?
1) обмотка. 2) ротор. 3) статор.


7. Чем приводится во вращение ротор генератора на тепловых станциях?
1) водой. 2) паром от сгоревшего топлива. 3) бензином. 4) керосином.

8. Чем приводится во вращение ротор генератора на гидроэлектростанции?
1) паром. 2) водой. 3) керосином. 4) кувалдой.

9. Какова стандартная частота переменного тока?
1) 65Гц. 2) 55 Гц. 3) 40 Гц. 4) 50 Гц. 5) 70 Гц.

10. Из каких элементов состоит трансформатор?
1) сердцевина. 2) сердечник. 3) первичная обмотка.
4) вторичная обмотка. 5) обмотки из проволоки.

11. Для чего предназначен трансформатор?
1) Трансформатор предназначен для увеличения или уменьшения переменного напряжения и силы тока
2) Трансформатор предназначен для увеличения или уменьшения переменного напряжения
3) Трансформатор предназначен для увеличения или уменьшения силы тока
4) Трансформатор предназначен для уменьшения переменного напряжения и силы тока
5) Трансформатор предназначен для увеличения напряжения и силы тока

12. Сколько видов трансформаторов существует?

1) 1. 2) 2. 3) 3. 4) 4. 5) 5.

13. К какой обмотке трансформатора подключают переменный электрический ток?
1) к первичной. 2) к вторичной. 3) к первичной и вторичной.

14. По какому физическому закону можно определить потери электроэнергии в ЛЭП?
1) закон Джоуля. 2) закон Джоуля-Ленца. 3) закон Ленца.
4) закон Паскаля. 5) закон Ньютона.

15. Кто изобрел трансформатор?
1) Лебедев. 2) Тимирязев. 3) Яблочков. 4) Паскаль.

ЭДС якоря зависит от потока и скорости вращения.

4-4. Реакция якоря в машинах постоянного тока

В режиме холостого хода генератора постоянного тока ток возбуждения создает основной поток, который при вращении якоря наводит в обмотке якоря ЭДС. Поток при холостом ходе имеет симметричный характер, рис. 181. Если якорную цепь подключить к нагрузке, то по обмотке якоря будет протекать ток, который создаст свой поток.

Взаимодействие потока якоря с потоком основных полюсов и называется реакцией якоря. Картину распределения потока якоря можно представить на рис. 182.

При холостом ходе генератора ЭДС, наводимая в обмотке якоря, определяется по правилу правой руки. Подключив нагрузку, в якоре появится ток с тем же направлением что и ЭДС. Ток создаст поток, который, взаимодействуя с потоком основных полюсов, создаст результирующий поток. За счет потока якоря набегающий край полюса будет размагничиваться, а сбегающий край полюса намагничиваться, рис. 183. Физическая нейтраль у генератора будет сдвигаться по ходу вращения якоря. Она перпендикулярна результирующему потоку.


Рис. 181 Рис. 182 Рис. 183

Реакция якоря у двигателя противоположна генератору.

Генератор Двигатель

При одинаковом направлении вращения якоря, независимо от режима работы, направление ЭДС в якоре одинаково. В двигательном режиме ток якоря направлен встречно ЭДС, поэтому реакция якоря двигателя противоположна генератору, т.е. набегающий край полюса будет намагничиваться, а сбегающий край полюса размагничиваться.

Рассмотрим намагничивающую силу реакции якоря, магнитную индукцию якоря и результирующую индукцию на полюсном делении.

Для рассмотрения намагничивающей силы реакции якоря введем понятие о линейной нагрузке якоря – ток приходящийся на единицу длины окружности якоря.

Путем введения этой величины можно условно заменить зубчатый якорь гладким, у которого линейная нагрузка равномерно распределена по всей поверхности. У реального якоря ток находится только в пазах, что осложняет расчет.

По закону полного тока следует, что намагничивающая сила по замкнутому контуру равна полному току, который охватывается этим контуром, а полный ток на данной длине определяется линейной нагрузкой.

Поэтому намагничивающая сила реакции якоря - линейный закон.

Определим закономерность индукции якоря. - линейный закон сохраняется под полюсами, а между полюсами за счет большого сопротивления воздуха кривая индукции имеет провал. (), рис. 184. При холостом ходе индукция имеет вид близкий к трапеции.

Результирующая кривая индукции имеет искаженный характер, т. е. набегающий край полюса размагничивается, а сбегающий намагничивается. Щетки установлены на нейтрали. Реакция якоря при этом будет поперечная, рис. 185.



Рис.185 Рис. 186 Рис. 187

Если щетки установить вдоль полюсов, реакция якоря будет продольно размагничивающая, рис. 186. Если щетки генератора сдвинуть на дугу () по направлению вращения то реакцию якоря можно разложить по осям, рис. 187

, ,

где: - поперечная ось

Продольная ось.

Поперечная намагничивающая сила искажает магнитный поток, а продольная размагничивает.

Реакция якоря влияет на все характеристики генераторов постоянного тока.

4-5. Генераторы постоянного тока

Генератор постоянного тока преобразует механическую энергию в электрическую. В зависимости от способов соединения обмоток возбуждения с якорем генераторы классифицируются:

1. генератор независимого возбуждения, рис. 188.

2. генераторы с самовозбуждением:

а) генератор параллельного возбуждения, рис. 189.

б) генератор последовательного возбуждения, рис. 190.

в) генератор смешанного возбуждения, рис. 191.


Энергетическая диаграмма генератора независимого возбуждения (рис. 192).


Механическая мощность на валу

Электромагнитная мощность

Отдаваемая электрическая мощность

- потери магнитные, механические, электрические, потери в щеточном контакте.

Разделив уравнение на ток якоря , получим:

или

4-5-1. Электромагнитный момент генератора постоянного тока

Сила, воздействующая на проводник с током равна , рис. 193. Для расчета принимаем индукцию на полюсном делении среднюю величину. Ток во всех проводниках одинаков, индукция средняя, каждый проводник практически пересекает магнитную линию перпендикулярно. Исходя из этого, можно суммарную силу всех проводников сосредоточить в одном проводнике.

Где - число проводников обмотки якоря. Электромагнитный момент

заменим , , ,получим ,

где: , - поток, тогда

Электромагнитный момент зависит от потока и тока якоря. В генераторном режиме электромагнитный момент является тормозным. Уравнение равновесного состояния моментов запишется , где:

Механический момент на валу генератора

Момент холостого хода

Электромагнитный момент

4-5-2. Генератор независимого возбуждения

Схема включения генератора независимого возбуждения представлена на рис. 194.

Свойства генератора определяются его характеристиками.

1.Характеристика холостого хода: , , , рис. 195

Пунктирная - расчетная характеристика холостого хода.

Характеристика холостого хода позволяет судить о степени насыщения магнитной цепи.

2. Нагрузочная характеристика: , , , рис.47.

Треугольник - характеристический. Катет - ток возбуждения, который идет на компенсацию реакции якоря.

3.Внешняя характеристика: , , рис. 48,Рис.

Электротехника с основами электроникиУчебное пособие >> Физика

Указаниям и конспекту лекций теоретические вопросы, ... , проанализировать энергетические соотношения и... рода электрических машин и... в промышленных электрических установках нежелательное и опасное... 1. Иванов И.И., Равдоник В.С. Электротехника . - М.: Высшая школа, ...

  • Теория сигналов и систем. Конспект лекций и практических занятий

    Конспект >> Коммуникации и связь

    Напряжения в промышленных установках , транспортных средствах... , импульс тока в электротехнике и т.п.) – математическая... и электронной вычислительной машине , обыгрывающей в шахматы... 1975. - 264 с. Лекция 6. ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ СИГНАЛОВ Содержание 1. Мощность...

  • Синхронные машины . Конспект лекций

    Конспект >>

    Якоря. В нормальных машинах постоянного тока, с установкой щеток на геометрической... рассмотрения впервые был предложен французским электротехником А. Блонделем в 1895 г. ... совместной работе синхронных машин в энергети­ческой системе необходимо учитывать их...

  • Контроль качества и определение свойств материалов

    Лекция >> Промышленность, производство

    Конспект лекций для студентов Оглавление Введение... задается с некоторой постоянной скоростью. Испытательные машины , в которых корректируется режим деформирования... или контактные. В хороших современных машинах датчик деформации индуктивный и крепится на...

  • Конспект урока физики в 9 классе по теме

    «Получение переменного электрического тока. Генератор»

    Цели урока: выяснить условия существования переменного тока; познакомиться с устройством трансформатора, рассмотреть принцип его действия, достоинства, практическое применение.
    Задачи урока:
    Образовательные:
    -создание условий для формирования представлений о переменном электрическом токе; генераторе.
    Развивающие:
    -формирование умения делать выводы, обобщать полученные сведения;
    -формирование у учащихся навыков работы с источниками информации
    -развивать навыки логического мышления, умение обосновывать свои высказывания, делать выводы.
    Воспитательные:
    - формирование положительной мотивации к учебному труду, коммуникативных умений;
    - формирование интереса к познанию окружающего мира;
    - формировать чувство гордости за развитие отечественной техники;
    - развивать интерес к рабочим профессиям.
    Тип урока: урок изучения нового материала.

    До начала урока демонстрируется таблица с комментированием.

    1 этап. Мотивация.

    На доске эпиграф: «...а какая польза может быть от новорожденного?» М. Фарадей.

    Проверка д/з

    «Да-нет»

      Верно ли, что явление электромагнитной индукции открыл Никола Тесла?

      Верно ли, что возникающий в замкнутом контуре индукционный ток своим магнитный действием противодействует тому изменению магнитного потока, которым он вызван?

      При приближении магнита к сплошному кольцу оно, притягиваясь, следует к магниту?

      При удалении магнита от разрезанного кольцу оно, притягиваясь, следует за магнитом?

      Прибор для демонстрации правила Ленца нельзя изготовить из железа?

    В 1821 году Майкл Фарадей написал в своем дневнике: «Превратить магнетизм в электричество», а в 1831 году открыл явление электромагнитной индукции. Нарисуйте схему эксперимента.

    Однажды Майкл Фарадей читал лекции в Лондонском Королевском университете, и одна из слушательниц его спросила «Какая польза может быть от такого малого тока?» На это Фарадей ей ответил: «А какая польза может быть от новорожденного?»

      Тема урока:Производство и передача электроэнергии. Генератор.

    Задачи: Выяснить, какие устройства порождают переменный электрический ток, изучить принцип их действия, выяснить принципы передачи тока.

    3 этап. Изучение нового материала. Генератор. Устройство и принцип действия.

    Генератор - устройство, которое преобразует энергию того или иного вида в электрическую. Еги принцип действия основан на явлении электромагнитной индукции. Простейший генератор состоит из двух частей - подвижного ротора и неподвижного статора. Видео 1мин46 сек.

    Эксперимент (если получится)

    4 этап. Первичное закрепление.

    Работа в группах. Рассмотрите схему генератора. Укажите его составные элементы, объясните, как он работает. При необходимости пользуйтесь стр. 174 учебника.

    Где производят электрический ток? На электростанциях. Какие виды электростанций вы знаете? Какие превращения энергии там происходят?

    Задание 4. Таблица. Работа в парах.

    Задание 5. Лови ошибку.

    Лови ошибку.

    Переменный электрический ток производится на электрических станциях с помощью акселератора.

    Генератором называется устройство, которое преобразует энергию любого вида в механическую.

    Электромеханический генератор состоит из подвижного ротора и неподвижного стартера.

    В основе действия генератора лежит правило буравчика.

    Генераторы используются в быту, в промышленности и в транспорте.

    Задание 6. В тестовой форме (по времени)

    5 этап. Рефлексия. Так какая же польза от новорожденного? Благодаря огромной теоретической работе ученых по изучению индукционного тока, сегодня в каждом доме есть электроэнергия. Подведение итогов. Заполнение таблицы.

    Д/З подготовить доклады по электростанциям.

    Электромагнитное поле

    УРОК 8/20

    Тема. Переменный ток. Генератор переменного тока

    Цель урока: сформировать у учащихся представление о переменный ток и способы его получения.

    Тип урока: комбинированный урок.

    ПЛАН УРОКА

    ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

    На производстве и в быту гораздо чаще используют переменный ток, чем постоянный.

    Ø Переменным током называют электрический ток, который периодически изменяется по величине и направлению.

    Переменный ток получают при помощи генераторов переменного тока с использованием явления электромагнитной индукции. Представим проводник в виде рамки площадью S , которая равномерно вращается с угловой скоростью ω в однородном магнитном поле (магнитная индукция перпендикулярна к оси вращения рамки). Магнитный поток через рамку Ф = ВScosα , где α - угол между вектором нормали к площади рамки и линиями магнитной индукции.

    Если начать отсчет времени в момент, когда вектор направленный вдоль линий магнитной индукции, то начальное значение угла α равен нулю, а зависимость угла от времени имеет вид: α = ωt , поэтому Ф = BScosωt .

    Изменение магнитного потока приводит к возникновению в рамке ЭДС индукции . Согласно закону электромагнитной индукции Скорость изменения магнитного потока Δ Ф/Δ t с точки зрения математики является производной функции Ф(t ), поэтому

    Таким образом, рассматриваемая рамка является источником ЭДС, выполняет гармонические колебания с амплитудой Если рамка состоит из N витков, то амплитуда ЭДС увеличивается в N раз:

    Чтобы воспользоваться полученной ЭДС, можно прикрепить подвижные концы рамки до неподвижных контактов внешнего электрического круга. Можно, например, обеспечить, чтобы металлическое кольцо от каждого из концов рамки скользило по своему упругому контакту (щетке). Тогда щетки можно рассматривать, как полюсы источников тока.

    Если присоединить к этим полюсам резистор сопротивлением R , напряжение на резисторе будет совпадать с ЭДС в рамке: а сила тока в резисторе будет:

    Амплитуда силы тока в этом выражении Период переменного тока, а его частота

    ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

    ЧТО МЫ УЗНАЛИ НА УРОКЕ

    · Переменным током называют электрический ток, который периодически изменяется по величине и направлению.

    · Генератор переменного тока является электромеханическим устройством, которое преобразует механическую энергию в электрическую энергию переменного тока.

    Рів1 № 9.2; 9.11; 9.12; 9.13.

    Рів2 № 9.24; 9.25; 9.26, 9.27.

    Рів3 № 9.31, 9.32; 9.33; 9.34.

    Поделиться