Особенности строения пластидов. Пластиды (хлоропласты, хромопласты), хлорофиллы, каротиноиды Какие пластиды имеются в клетках зеленых растений

Пластиды.

Пластиды высших растений бывают 3-х типов. У низших (водорослей, например) они более разнообразны.

    хлоропласты (Хлорос – зеленые) по форме похожи на зерно чечевицы. Поэтому есть название – хлорофилловые зерна. Пигмент хлорофилл придает растениям зеленый цвет.

    Хромопласты – (Хромос –цвет) окрашены различно. Образованы пигментами красного, желтого, оранжевого цвета.

    Лейкопласты (бесцветные).

Хлоропласты находятся в зеленых частях растений. Все пластиды всегда находятся только в цитоплазме растительных клеток. Ни в вакуолях, ни в оболочке пластид не бывает. Цитоплазма – часть протопласта. В виде геля или золя. Состоит из живой части и органоидов: кристаллические белковые зерна, мембранные системы. Основной органоид – ядро. Хлоропласты по консистенции полужидкие, в них происходит фотосинтез.

Фотосинтез – сложный биохимический процесс, комплекс биохимических реакций. Суммарное уравнение фотосинтеза –

6Н 2 0+6СО 2 + h→С 6 Н 12 О 6 + 6О 2 .

Фотосинтез – многоступенчатый процесс. Переносчик ē – цитохромы С. Роль фотосинтеза – космическая. Ее трудно переоценить. В результате фотосинтеза ежегодно образуется 400 млрд тонн органических веществ. При этом связывается в процессе фотоситеза 160 млрд тонн углевода. К счастью, столько же органических веществ и разлагается в результате жизнедеятельности человека, животных, микроорганизмов. Микроорганизмы возвращают в атмосферу СО 2 . Иначе планета была бы завалена неразложенной органикой, истощили запас углекислого газа, которого в атмосфере 0,3 – 0,03%.

Масса растений в 220 раз больше массы всех животных. В фундаменте цепей питания находятся растения. Однако по количеству видов растения значительно уступают. Насекомых более 1 млн видов. Всех растений – 500 тыс видов.

Строение хлоропласта.

Хлоропласт представляет собой двойную белково – липоидную мембрану. Двойная мембрана есть еще только у митохондрий, у остальных органелл – одинарная. Тело хлоропласта – строма, полужидкая. В нее погружены различные мембранные структуры. Их 2 типа: плоские дисковидные мешочки, уложенные стопочками – граны. На мембранах гран находится пигмент хлорофилл – источник энергии для фотосинтеза. Граны связаны между собой более узкими мембранами – тилакоидами стромы. Не имеют форму дисков. Их совокупность образует единую систему. Синтез органических веществ происходит в строме. Кроме хлорофилла есть и другие пигменты – красный – каротин, желтый – ксантофилл, их меньше, чем хлорофиллов.

Кроме пигментов содержится ДНК – вещество наследственности, РНК – посредник в переносе наследственной информации, рибосомы. Причем, синтез белка в хлоропластах не зависит от ядерной ДНК. Если белок синтезируется, то он присутствует в биосинтезе.

Внутри стромы находятся шаровидные образования, крахмалистые – результат фотосинтеза, трансформируется в другие части клетки.

Хромопласты – имеют различные оттенки красного, желтого, оранжевого цветов и находятся в ярко – окрашенных частях растений. Например, лепестки цветов, поды, корнеплоды – хромопласты придают им яркую окраску. Форма хромопластов неодинакова даже в пределах одной клетки. Зрелые хромопласты – твердые. Цвет зависит от соотношения каротина и ксантофилла. Т.к. эти пигменты откладываются в виде кристаллов, то их различное взаиморасположение придает различную форму пластидам. Роль хромопластов заключается в том, что яркая окраска венчиков привлекает насекомых – опылителей. Яркие плоды – привлекательны для животных, распространяющих семена. Хромопласты содержатся в корнеплодах. Морковь, содержит каротин = провитамин А. В плодах шиповника, рябины, яркие румяные яблоки, желтые лютики, оранжевые настурции, летнее разнотравье – результат присутствия хромопластов. Плоды вишни, сливы окрашены антоцианом клеточного сока. Белые венчики результат отсутствия пигментов, или наличия лейкопластов. Тем не менее, белые душистые цветки ландыша в хвойном лесу привлекают насекомых ярким белым пятном.

Лейкопласты – бесцветные. Располагаются в таких частях растений как кожица листьев, корневища, корни, корнеплоды, клубни картофеля. Не имеют пигментов, поэтому бесцветные. С трудом наблюдаются в микроскоп. Роль лейкопластов – накопление питательных веществ, увеличение размеров, определяют форму, тогда их называют по веществам: если накапливается крахмал, то образуются крахмальные зерна = амилопласты; если масло в виде капель = олеинопласты (элайопласты); если белки = называются протеинопласты-белковые зерна.

Форма лейкопластов – видовой признак.

Все пластиды имеют общее происхождение, поэтому могут превращаться друг в друга. Например, осеннее изменение окраски листьев – хлоропласты превращаются в хромопласты. При понижении температуры распад хлорофилла происходит быстрее, чем распад каротиноидов. Позеленение бесцветного ростка (глазки картофеля) – лейкопласты переходят в хлоропласты. Хромопласты – конечный продукт превращения. Хромопласты не могут превращаться в другие структуры. Яблоки, шиповник превращаются из зеленых в красные – аналогичный процесс взаимоперехода пластид. Если зеленые побеги держать в темноте, то они светлеют.

Пластиды не могут синтезироваться из других веществ.

Гетеротрофы питались фаго- или пиноцитозом. Полагают, что при встрече клеток гетеротрофов и цианобактерий образовывались пищеварительные вакуоли, клетки переваривались, а питательные вещества использовались гетеротрофами. Поскольку в результате попадала часть веществ фотосинтеза, то постепенно перестраивались биохимические процессы. Такой симбиоз был выгоден для обоих организмов. Гетеротрофы получали органические вещества, а синезеленые водоросли – постоянство среды, защиту, углекислый газ, воду. В пользу этой гипотезы говорит двойная мембрана. Одна мембрана – принадлежность бактерии,– пищеварительной вакуоли гетеротрофа, а другая – оболочка сине-зеленой водоросли. Митохондрии имеют также симбиотическое происхождение.

Доказательством этой гипотезы служит автономное поведение хлоропластов внутри клеток, собственная биосинтетическая система. Размножение делением независимо от ядра клетки.

Недостаток теории: сине-зеленые водоросли способны к самостоятельному существованию на примитивном уровне. У современных – другой биохимический состав, другие пигменты, хлорофилл, другие запасные питательные вещества, не образуется крахмал.

Органоиды общего значения, имеющие двумембранный принцип строения. Встречаются только в клетках растений. Впервые пластиды были описаны еще Антонио ван Левенгуком в 1676 году.

Виды:
1) хлоропласты – зеленые пластиды, содержащие в большом количестве пигмент хлорофилл, а также каротиноиды;
2) хромопласты – красно-желтые пластиды, содержащие только пигменты из группы каратиноидов (каротин и ксантофилл);
3) лейкопласты – бесцветные пластиды.

Пигменты фотосинтеза: основными фотосинтетическими пигментами у высших растений и зеленых водорослей являются:

♦ Хлорофилл – А (зелено-голубой) = C55H72O5N4Mg;

♦ Хлорофилл – В (желто-зеленый) = C55H70O6N4Mg;

Каротиноиды:

♦ Каротин (оранжево-красные) = С40Н56;

♦ Ксантофилл (желтые) = С40Н56О2.

В процессе фотосинтеза эти пигменты способны поглощать электромагнитные волны только видимого света.

Оба хлорофилла – А и В – интенсивно аккумулируют лучи красного спектра и частично – голубого и фиолетового. Они не способны поглощать излучение зеленого спектра, поэтому такие волны они отражают и визуально кажутся зелеными пигментами. Каротиноиды поглощают лучи голубого, зеленого и фиолетового спектра. Каротины отражают «оранжевые лучи», поэтому кажутся оранжевыми включениями, ксантофиллы отражают излучение желтого спектра, следовательно, они – желтые пигменты. При интенсивном освещении каротиноиды защищают молекулы хлорофилла от возможного фотоокисления.

Строение хлоропласта

Форма: дисковидная.

Размеры: ширина 2 – 4 мкм.

1 – наружная мембрана;
2 – межмембранное пространство;
3 – внутренняя мембрана;
4 – тилакоиды;
5 – граны;
6 – пластоглобулы;
7 – ДНК;
8 – рибосомы;
9 – матрикс

Структура хлоропластов: хлоропласт отграничен двумя мембранами, а внутри находится студенистое вещество – строма. Наружная мембрана гладкая, внутренняя образует много складок, напоминающих стопки монет – граны.

В гранах заключены пигменты, акцепторы и доноры электронов, принимающие участие в световой фазе фотосинтеза, в ходе которой происходит реакция фотофосфорилирования и образуется АТФ. Кроме того, продуктами световой фазы являются: О2 и Н2О, НАДФ Н2.

Как и в митохондриях, в хлоропластах создаются два пространства: первое называется межмембранным – около 20 – 30 нм, оно заполнено водянистым содержимым. Второе, отграниченное внутренней мембраной, носит название «строма». В строме располагаются собственная ДНК, рибосомы, белки-ферменты, которые принимают непосредственное участие в темновой фазе фотосинтеза. Продуктом темновой фазы является глюкоза – С6Н12О6 .

Пластиды, как и митохондрии, способны удваиваться, имеют собственный аппарат по синтезу белка, следовательно, являются полуавтономными органоидами растительных клеток.

Пластиды обладают функциональной пластичностью и способны к видоизменениям: лейкопласты → хлоропласты → хромопласты. Лейкопласты можно считать предшественниками хлоропластов.

Хлоропласты – это активный фотосинтетический аппарат клетки.

Хромопласты представляют собой неактивные дегенерирующие пластиды.

Функции:

♦ хлоропласты играют активную роль в первичном синтезе углеводов (синтезе глюкозы), который называется фотосинтезом. Иногда принимают участие во вторичном – синтезе крахмала. Широко представлены в клетках зеленых органов растений (листья, молодые стебли, нераспустившиеся бутоны).

♦ лейкопласты – эти пластиды широко представлены в клетках подземных органов растений (корни, клубни, луковицы и др.), так как они выполняют запасающую функцию.

♦ хромопласты обнаруживаются в клетках лепестков цветов, созревших плодов. Создавая яркую окраску, они способствуют привлечению насекомых для опыления цветков, животных и птиц для распространения плодов и семян в природе.

Пластиды (греч.plastides - созидающие, образующие) - это мембранные органоиды фотосинтезирующих эукариотических органоидов - высших растений, низших водорослей, некоторых одноклеточных. Пластиды присутствуют во всех типах клеток растения, в каждом типе находится свой набор этих органоидов. Всем пластидам свойственен ряд общих черт. Они имеют свой генетический аппарат и окружены оболочкой, состоящей из двух концентрических мембран.

Все пластиды развиваются из пропластид. Они представляют собой мелкие органоиды, присутствующие в клетках меристемы, судьба которых определяется потребностями дифференцированных клеток. Все типы пластид представляют собой единый генетический ряд.

Лейкопласты (греч.leucos - белый) - бесцветные пластиды, которые содержатся в клетках растительных органов, лишенных окраски. Они представляют собой округлые образования, наибольший размер которых - 2-4 мкм. Они окружены оболочкой, состоящей из двух мембран, внутри которой находится белковая строма. Строма лейкопластов содержит небольшое число пузырьков и плоских цистерн - ламелл. Лейкопласты способны развиваться в хлоропласты, процесс их развития связан с увеличением размеров, усложнением внутренней структуры и образованием зеленого пигмента - хлорофилла. Такая перестройка пластид происходит, например, при позеленении клубней картофеля. Лейкопласты способны также переходить в хромопласты. В некоторых тканях, таких как эндосперм в зерновке злаков, в корневищах и клубнях лейкопласты превращаются в хранилище запасного крахмала - амилопласты. Онтогенетические переходы одной формы в другую необратимы, хромопласт не может сформировать ни хлоропласт, ни лейкопласт. Точно так же хлоропласт не может вернуться в состояние лейкопласта.

Хлоропласты (chloros-зеленый) - основная форма пластид, в которых протекает фотосинтез. Хлоропласты высших растений представляют собой линзовидные образования, ширина которых составляет по короткой оси 2-4 мкм, по длинной - 5 мкм и больше. Количество хлоропластов в клетках разных растений варьирует очень сильно, в клетках высших растений содержится от 10 до 30 хлоропластов. В гигантских клетках палисадной ткани махорки их обнаружено около тысячи. Хлропласты водорослей первоначально были названы хроматофорами. У зеленых водорослей может быть один хроматофор на клетку, у эвгленовых и динофлагеллят молодые клетки содержат от 50 до 80 хлоропластов, старые - 200-300. Хлоропласты водорослей могут быть чашевидными, лентовидными, спиралевидными, пластинчатыми, звездчатыми, в них обязательно присутствует плотное образование белковой природы - пиреноиды, вокруг которого концентрируется крахмал.

Ультраструктура хлоропластов обнаруживает большое сходство с митохондриями, прежде всего в строении оболочки хлоропласта - перистромия. Он окружен двумя мембранами, которые разделены узким межмембранным пространством шириной около 20-30 нм. Наружная мембрана обладает высокой проницаемостью, внутренняя - менее проницаема и несет специальные транспортные белки. Следует подчеркнуть, что наружная мембрана непроницаема для АТФ. Внутренняя мембрана окружает большую центральную область - строму, это аналог митохондриального матрикса. Строма хлоропласта содержит разнообразные ферменты, рибосомы, ДНК и РНК. Есть и существенные различия. Хлоропласты значительно крупнее митохондрий. Их внутренняя мембрана не образует крист и не содержит цепи переноса электронов. Все важнейшие функциональные элементы хлоропласта размещены в третьей мембране, которая образует группы уплощенных дисковидных мешочков - тилакоидов она называется тилакоидная мембрана. Эта мембрана включает в свой состав пигмент-белковые комплексы, прежде всего хлорофилл, пигменты из группы каротиноидов, из которых обычны каротин и ксантофилл. Кроме того, в тилакоидную мембрану включены компоненты электрон-транспортных цепей. Внутренние полости тилакоидов создают третий внутренний компартмент хлоропласта - тилакоидное пространство. Тилакоиды образуют стопки - граны, содержащие их от нескольких штук до 50 и более. Размер гран, в зависимости от числа тилакоидов в них, может достигать 0,5 мкм, в этом случае они доступны для наблюдений светового микроскопа. Тилакоиды в гранах плотно соединены, в месте контакта их мембран толщина слоя составляет около 2 нм. В состав гран, кроме тилакоидов, входят участки ламелл стромы. Это плоские, протяженные, перфорированные мешки, располагающиеся в параллельных плоскостях хлоропласта. Они не пересекаются и замкнуты. Ламеллы стромы связывают отдельные граны. При этом полости тилакоидов и полости ламелл не связаны.

Функция хлоропластов - фотосинтез, образование органических веществ из углекислого газа и воды за счет энергии солнечного света. Это один из важнейших биологических процессов, постоянно и в огромных масштабах, совершающихся на нашей планете. Ежегодно растительность земного шара образует более 100 млрд т. органического вещества, усваивая около 200 млрд тонн углекислого газа и выделяя во внешнюю среду около 145 млрд тонн свободного кислорода.

Хромопласты Это пластиды растительной клетки, имеющие окраску желто-оранжевой гаммы. Их можно определить как сенильные, деградирующие органоиды клетки, они образуются при разрушении хлоропластов. Об этом свидетельствует и химический состав пластид. Если в хлоропластах белки составляют около 50% их общей массы, а липиды 30%, то в хромопластах это соотношение меняется следующим образом: 22% белков, 58% липидов, ДНК уже не обнаруживается. Окраска хромопластов зависит от присутствия каротиноидов и разрушения хлорофилла. Азотсодержащие соединения (производные пиррола), возникающие при распаде хлорофилла, оттекают из листьев так же, как и белки, образующиеся при распаде белково-липидной системы мембран. Липиды остаются внутри перистромия. В них растворяются каротиноиды, окрашивая пластиды в желтые и оранжевые тона. Образование хромопластов из хлоропластов происходят двумя путями. Например, у лютика хромопласты образуются из бледно-зеленых хлоропластов, содержащих крахмал. Постепенно исчезают хлорофилл и крахмал, увеличивается содержание желтого пигмента, который растворяется в липидных каплях, образуя глобулы. Одновременно с образованием глобул происходит окончательное разрушение ламеллярной структуры хлоропласта. В сформировавшемся хромопласте сохраняется только перистромий, глобулы покрывают всю его внутреннюю поверхность, а центр пластиды выглядит оптически пустым. Роль хромопластов в клетке не ясна. Но для растительного организма в целом эти пластиды играют важную роль, так как органы растения, в которых прекращается фотосинтез, становятся привлекательными для насекомых, птиц, других животных, которые осуществляют опыление растений и распространение их плодов и семян. При осеннем пожелтении листьев разрушение хлоропластов и образование хромопластов приводит к утилизации белков и азотсодержащих соединений, которые перед листопадом оттекают в другие органы растения.

Пластиды – это , входящие в структуру растительной клетки. Они хорошо видны под микроскопом, содержатся в растениях. Исключение составляют одноклеточные водоросли, бактерии и грибы.

В органеллах содержится генетический код, они способны воспроизводить себе подобных путем синтеза ДНК, белков. Роль и функции пластид в клетке определяется их строением. Они способны накапливать питательные вещества, выступать в роли депо. Отдельные виды пластид выполняют функцию фотосинтеза под воздействием энергии света.

Навигация по статье

Виды

В зависимости от погодных условий, фазы роста в клетках растений находится до трех типов пластид. Они представлены в таблице.

Название пластид Окраска В какой части растения Функции Что содержат
бесцветные

прозрачные

подземная часть запасник питательных веществ Крахмал

ферменты

зеленые стебель, листва, незрелый плод фотосинтез питательных веществ хлорофилл
оттенки:

оранжевого

красного

лепестки бутона

корнеплоды

листья в период листопада

привлечение

опылителей

распространителей семенного материала

Каротиноиды

антоциан

ксантофилл

ферменты

Среди этих видов пластид нет четких разделений. Они схожи по строению, способны к трансформации:

  • лейкопласты под воздействием света перерождаются в хлоропласты;
  • хлоропласты становятся хромопластами под воздействием погодных факторов (длины светового дня, температуры);
  • в лабораторных условиях хромопласты вновь зеленеют, становятся хлоропластами;
  • хлоропласты преобразуются в лейкопласты (листья отпускают корни в воде).

Строение пластид

Размер органоидов небольшой, от 3 до 10 микрон. Обычно они имеют круглую или овальную форму, выпуклые сверху, снизу.

Строение и функции пластид в разных фазах роста меняются.

Большинство имеют две мембраны:

  • внешняя (оболочная):
  • внутренняя (погруженная в стромы).

У некоторых высокоорганизованных растений в строении пластид до четырех мембранных перегородок. За счет мембран формируются:

  • тилакоиды – своеобразные отсеки различного строения;
  • граны – столбчатые или цепочные скопления тилакоидов;
  • ламелы – тилакоиды удлиненной формы.

Строма – вязкое содержимое, схожее в строении пластид.

Хлоропласты

Зеленые органоиды по строению встречаются различной формы, выделяют:

  • овальные;
  • спиралевидные;
  • лопастные;
  • эллипсоидные.

Важный компонент стромы – хлорофилл, необходимый для фотосинтеза.

В сложных пластидах элементы строения: белки, жиры, пигменты, ДНК, РНК.

Хромопласты

Двояковыпуклые, имеют различное строение:

  • трубчатое;
  • сферическое;
  • кубическую;
  • кристаллообразную.

Хромопласты в структуре содержат зерна крахмала. В них полностью разрушен зеленый пигмент, сохраняются другие питательные компоненты хлоропласта.

Лейкопласты

По строению и составу стромы подразделяются на:

  • амилопласты – запасники крахмала, при необходимости они трансформируются в моносахара;
  • элайопласты (липидопласты) они содержат жиры;
  • протеинопласты – кладовые белка.

По форме бывают в виде овала или эллипса.

Функции пластид

Первоначально формируются хлоропласты и лейкопласты. Роль этих пластид – фотосинтез, производство веществ, входящих в состав растительных клеток. Под воздействием света происходит четкое деление по виду органоидов и их функции.

В клетках высокоорганизованных видов растений содержится разное число органоидов. Их бывает 10, иногда количество достигает 200 единиц. В период похолоданий в листьях начинается синтез определенных пигментов. За счет этого строение органоида меняется.

Концентрация, состав красителя в плодах растений зависит от ДНК-кода. Цветные пигменты становятся видны после разрушения хлорофилла. Он боится низких температур. Растение готовится к зимнему периоду. Роль хромопластов – привлекающая и накопительная. Жиры, ферменты, белки, изначально содержащиеся в лейкопластах, накапливаются в процессе роста и спелости.

Значение хлоропластов

Эти органоиды отвечают функцию фотосинтеза, развитие клеток. Они ступенчато синтезируют глюкозу из двуокиси азота и воды. Реакция протекает с выделением кислорода. Процесс происходит за счет хлорофилла – по компонентному составу это углеводород. Высвобождая электрон под воздействием света, он меняет функцию, становится восстановителем.

Функции хромопластов

В процессе пучкования структура органоидов меняется. В хромопластах образуются пластоглобулы – скопления питательных веществ. Изменяются, разрушаются мембраны, клетка уплотняется. Внутреннее строение влияет на функции пласта: окраска становится более привлекательной, яркой за счет роста концентрации пигмента из-за разрушения мембранного строения органоида.

Роль лейкопластов

Функции подземной части растения зависят от разновидности лейкопласта. В зависимости от ДНК-кода, структура пластов изменяется. Функции клетки меняются, это зависит от компонентного состава – количества жиров, белков, сахаров, крахмала формирующего плода. По форме в основном круглые, реже овальные. Это обусловлено строением клетки эукариотического вида.

Пигменты пластид

В структуру клеточных органоидов входят три группы пигментов:

  • хролофилл – магний-порфириновые белковые комплексы хромопротеидов, придающие листьям, стволу зеленую окраску;
  • каротиноид – красящий пигмент, схожий с ретинолом (витамин А), в зависимости от концентрации обретают оранжевую или красноватую окраску;
  • ксантофилл по сути – окисленный каротин, содержится вместе с р-каротином, имеет такие же функции;
  • фикобилинпротеиды по компонентной структуре схожи с желчными пигметно-белковыми соединениями. К ним относятся: синие фикоцианины, придающие окраску плодам; красно-бордовые фикоэритрины.

Происхождение пластид

По одной гипотезе они возникли из цианобактерий. Позже возникла теория природного симбиогенеза бактерий, в состав которых входит хлорофилл, и пластидообразных микроорганизмов. Так объясняли появление митохондрий от эукариот.

Внимание ученые уделяли пигментному строению растительных клеток, позже ушли от этой версии. Появилась гипотеза возникновения пластид Archaeplastidae от зеленой водоросли и цианобактерии. Позже, благодаря симбиозу, зародились цветные простейшие водоросли. Они схожи по строению пластидами клеток:

  • содержится хлорофилл;
  • обнаружены пигментные включения;
  • мембранная структура.

Какого цвета могут быть пластиды?

Если рассматривать растение целиком, выделяется три цветовых гаммы:

  • желтые, оранжевые, красные пластиды расположены в цветках, плодах, корнеплодах, реже – листьях, стволе;
  • интенсивность окраски зависит от концентрации пигмента каратиноида;
  • зеленые органоиды – хлоропласты, они участвуют в процессе фотосинтеза; способны трансформироваться в хромопласты различной окраски или бесцветные лейкопласты.

Цвет пластид взаимосвязан с их функциональностью. Какого цвета будет органоид цветка, плода, корнеплода, зависит от модели ДНК. Информация воспроизводится в период роста растения.

Пигментация цветка привлекает внимание насекомых, участвующих в медосборе, происходит опыление. Яркий окрас плодов служит сигналом созревания семян, косточек для животных. Они распространяют семенной материал по обширной территории.

На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворённые в первичном океане, через поверхность тела.

Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.

Одно из важных достижений жизни — разделение ядра и цитоплазмы. В ядре находится наследственная информация. Специальная мембрана вокруг ядра позволила защитить от случайных повреждений. По мере необходимости цитоплазма получает из ядра команды, направляющие жизнедеятельность и развитие клетки.

Организмы, у которых ядро отделено от цитоплазмы, образовали надцарство ядерных (к ним относятся — растения, грибы, животные).

Таким образом, клетка — основа организации растений и животных — возникла и развилась в ходе биологической эволюции.

Даже не вооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов, в том числе и растительных.

Жизнь растения осуществляется соединённой деятельностью его клеток, создающих единое целое. При многоклеточности частей растения существует физиологическое разграничение их функций, специализация различных клеток в зависимости от местоположения их в теле растения.

Растительная клетка отличается от животной тем, что имеет плотную оболочку, покрывающую внутреннее содержимое со всех сторон. Клетка не является плоской (как её принято изображать), она скорей всего похожа на очень маленький пузырёк, наполненный слизистым содержимым.

Строение и функции растительной клетки

Рассмотрим клетку как структурно-функциональную единицу организма. Снаружи клетка покрыта плотной клеточной стенкой, в которой имеются более тонкие участки — поры. Под ней находится очень тонкая плёнка — мембрана, покрывающая содержимое клетки — цитоплазму. В цитоплазме есть полости — вакуоли, заполненные клеточным соком. В центре клетки или около клеточной стенки расположено плотное тельце — ядро с ядрышком. От цитоплазмы ядро отделено ядерной оболочкой. По всей цитоплазме распределены мелкие тельца — пластиды.

Строение растительной клетки

Строение и функции органоидов растительной клетки

Органоид Рисунок Описание Функция Особенности

Клеточная стенка или плазматическая мембрана

Бесцветная, прозрачная и очень прочная

Пропускает в клетку и выпускает из клетки вещества.

Клеточная мембрана полупроницаемая

Цитоплазма

Густое тягучее вещество

В ней располагаются все другие части клетки

Находится в постоянном движении

Ядро (важная часть клетки)

Округлое или овальное

Обеспечивает передачу наследственных свойств дочерним клеткам при делении

Центральная часть клетки

Сферической или неправильной формы

Принимает участие в синтезе белка

Резервуар, отделённый от цитоплазмы мембраной. Содержит клеточный сок

Накапливаются запасные питательные вещества и продукты жизнедеятельности ненужные клетке.

По мере роста клетки мелкие вакуоли сливаются в одну большую (центральную) вакуоль

Пластиды

Хлоропласты

Используют световую энергию солнца и создают органические из неорганических

Форма дисков, отграниченных от цитоплазмы двойной мембраной

Хромопласты

Образуются в результате накопления каротиноидов

Жёлтые, оранжевые или бурые

Лейкопласты

Бесцветные пластиды

Ядерная оболочка

Состоит из двух мембран (наружная и внутренняя) с порами

Отграничивает ядро от цитоплазмы

Даёт возможность осуществляться обмену между ядром и цитоплазмой

Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.

Современная обобщенная схема растительной клетки

Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.

Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.

Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.

Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.

Строение клеточной мембраны

Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.

Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Строение лизосомы

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Строение рибосомы

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.

Поделиться