Высокое напряжение и не только. Генератор высокого напряжения на транзисторе Простой генератор высоковольтных импульсов

Мощный генератор высокого напряжениям (аппарат Кирлиана), 220/40000 вольт

Генератор вырабатывает напряжение до 40000 В и даже выше, которое можно прилагать к электродам, описанным в предыдущих проектах.

Может потребоваться использование в электроде более толстой стеклянной или пластмассовой пластины во избежание серьезного электрического удара. Хотя схема достаточно мощная, ее выходной ток невелик, что снижает опасность смертельного удара при соприкосновении с какими-либо частями устройства.

Тем не менее следует быть крайне осторожным при обращении с ней, так как возможность электрошока все равно не исключена.

Внимание! Высокие напряжения опасны. Будьте предельно осторожны при работе с данной схемой. Желательно иметь опыт обращения с подобными устройствами.

Вы можете использовать генератор в экспериментах с фотографией Кирлиана (электрофотографией) и других паранормальных экспериментах, например связанных с плазмой или ионизацией.

В схеме используются обычные компоненты, ее выходная мощность составляет около 20 Вт.

Ниже приведены некоторые характеристики устройства:

  • напряжение источника питания - 117 В или 220/240 В (сеть переменного тока);
  • выходное напряжение - до 40 кВ (в зависимости от высоковольтного трансформатора);
  • выходная.мощность - от 5 до 25 Вт (в зависимости от используемых компонентов);
  • число транзисторов - 1;
  • рабочая частота - от 2 до 15 кГц.

Принцип работы

Схема, показанная на рис. 2.63, состоит из однотранзисторного генератора, рабочая частота которого определяется конденсаторами С3 и С4 и индуктивностью первичной обмотки высоковольтного трансформатора.

Рис. 2.63 Аппарат Кирлиана

В проекте используется мощный кремниевый n-p-n транзистор. Для отвода тепла его следует укрепить на достаточно большом радиаторе.

Резисторы R1 и R2 определяют выходную мощность, задавая ток транзистора. Его рабочую точку задает резистор R3. В зависимости от характеристик транзистора необходимо опытным путем подобрать значение резистора R3 (оно должно находиться в пределах 270...470 Ом).

В качестве высоковольтного трансформатора, который также определяет рабочую частоту, используется выходной трансформатор горизонтальной развертки телевизора (строчный трансформатор) с ферритовым сердечником. Первичная обмотка состоит из 20...40 витков обычного изолированного провода. На вторичной обмотке образуется очень высокое напряжение, которое вы и будете использовать в экспериментах.

Источник питания очень простой он представляет собой двухполупериодный выпрямитель с понижающим трансформатором. Рекомендуется использовать трансформатор со вторичными обмотками, обеспечивающими напряжение 20...25 В и токи 3...5 А.

Сборка

Перечень элементов приведен в табл. 2.13. Так как требования к сборке не очень строгие, на рис. 2.64 представлен способ монтажа с использованием монтажной колодки. На ней размещаются небольшие детали, такие как резисторы и конденсаторы, соединенные между собой навесным монтажом.

Таблица 2.13. Перечень элементов

Крупные детали, например трансформатор, прикрепляются винтами прямо к корпусу.

Корпус лучше делать пластмассовый или деревянный.

Рис. 2.64. Монтаж устройства

Высоковольтный трансформатор можно изъять из неработающего черно-белого или цветного телевизора. Если получится, воспользуйтесь телевизором с диагональю 21 дюйм или больше: чем крупнее кинескоп, тем большее напряжение должен формировать строчный трансформатор телевизора.

Резисторы R1 и R2 - проволочные С1 - любой конденсатор номиналом 1500...4700 мкФ.

20 февраля 2014 в 18:27

Опасное развлечение: простой для повторения генератор высокого напряжения

  • DIY или Сделай сам
  • Tutorial

Добрый день, уважаемые хабровчане.
Этот пост будет немного необычным.
В нём я расскажу, как сделать простой и достаточно мощный генератор высокого напряжения (280 000 вольт). За основу я взял схему Генератора Маркса . Особенность моей схемы в том, что я пересчитал её под доступные и недорогие детали. К тому же сама схема проста для повторения (у меня на её сборку ушло 15 минут), не требует настройки и запускается с первого раза. На мой взгляд намного проще чем трансформатор Теслы или умножитель напряжения Кокрофта-Уолтона.

Принцип работы

Сразу после включения начинают заряжаться конденсаторы. В моём случае до 35 киловольт. Как только напряжение достигнет порога пробоя одного из разрядников, конденсаторы через разрядник соединятся последовательно, что приведёт к удвоению напряжения на конденсаторах, подсоединённых к этому разряднику. Из-за этого практически мгновенно срабатывают остальные разрядники, и напряжение на конденсаторах складывается. Я использовал 12 ступеней, то есть напряжение должно умножиться на 12 (12 х 35 = 420). 420 киловольт - это почти полуметровые разряды. Но на практике, с учетом всех потерь, получились разряды длиной 28 см. Потери были вследствие коронных разрядов.

О деталях:

Сама схема простая, состоит из конденсаторов, резисторов и разрядников. Ещё потребуется источник питания. Так как все детали высоковольтные, возникает вопрос, где же их достать? Теперь обо всём по порядку:
1 - резисторы
Нужны резисторы на 100 кОм, 5 ватт, 50 000 вольт.
Я пробовал много заводских резисторов, но ни один не выдерживал такого напряжения - дуга пробивала поверх корпуса и ничего не работало. Тщательное загугливание дало неожиданный ответ: мастера, которые собирали генератор Маркса на напряжение более 100 000 вольт, использовали сложные жидкостные резисторы генератор Маркса на жидкостных резисторах, или же использовали очень много ступеней. Я захотел чего-то проще и сделал резисторы из дерева.

Отломал на улице две ровных веточки сырого древа (сухое ток не проводит) и включил первую ветку вместо группы резисторов справа от конденсаторов, вторую ветку вместо группы резисторов слева от конденсаторов. Получилось две веточки с множеством выводов через равные расстояния. Выводы я делал путём наматывания оголённого провода поверх веток. Как показывает опыт, такие резисторы выдерживают напряжение в десятки мегавольт (10 000 000 вольт)

2 - конденсаторы
Тут всё проще. Я взял конденсаторы, которые были самыми дешевыми на радио рынке - К15-4, 470 пкф, 30 кВ, (они же гриншиты). Их использовали в ламповых телевизорах, поэтому сейчас их можно купить на разборке или попросить бесплатно. Напряжение в 35 киловольт они выдерживают хорошо, ни один не пробило.
3 - источник питания
Собирать отдельную схему для питания моего генератора Маркса у меня просто не поднялась рука. Потому, что на днях мне соседка отдала старенький телевизор «Электрон ТЦ-451». На аноде кинескопа в цветных телевизорах используется постоянное напряжение около 27 000 вольт. Я отсоединил высоковольтный провод (присоску) с анода кинескопа и решил проверить, какая дуга получится от этого напряжения.

Вдоволь наигравшись с дугой, пришел к выводу, что схема в телевизоре достаточно стабильная, легко выдерживает перегрузки и в случае короткого замыкания срабатывает защита и ничего не сгорает. Схема в телевизоре имеет запас по мощности и мне удалось разогнать её с 27 до 35 киловольт. Для этого я покрутил подстроичник R2 в модуле питания телевизора так, что питание в строчной развертке поднялось с 125 до 150 вольт, что в свою очередь привело к повышению анодного напряжения до 35 киловольт. При попытке ещё больше увеличить напряжение, пробивает транзистор КТ838А в строчной развёртке телевизора, поэтому нужно не переборщить.

Процесс сборки

С помощью медной проволоки я прикрутил конденсаторы к веткам дерева. Между конденсаторами должно быть расстояние 37 мм, иначе может произойти нежелательный пробой. Свободные концы проволоки я загнул так, чтобы между ними получилось 30 мм - это будут разрядники.

Лучше один раз увидеть, чем 100 раз услышать. Смотрите видео, где я подробно показал процесс сборки и работу генератора:

Техника безопасности

Нужно соблюдать особую осторожность, так как схема работает на постоянном напряжении и разряд даже от одного конденсатора будет скорее всего смертельным. При включении схемы нужно находиться на достаточном удалении потому, что электричество пробивает через воздух 20 см и даже более. После каждого выключения нужно обязательно разряжать все конденсаторы (даже те, что стоят в телевизоре) хорошо заземлённым проводом.

Лучше из комнаты, где будут проводиться опыты, убрать всю электронику. Разряды создают мощные электромагнитные импульсы. Телефон, клавиатура и монитор, которые показаны у меня в видео, вышли из строя и ремонту больше не подлежат! Даже в соседней комнате у меня выключился газовый котёл.

Нужно беречь слух. Шум от разрядов похож на выстрелы, потом от него звенит в ушах.

Первое, что ощущаешь при включении - то, как электризуется воздух в комнате. Напряженность электрического поля настолько высока, что чувствуется каждым волоском тела.

Хорошо заметен коронный разряд. Красивое голубоватое свечение вокруг деталей и проводов.
Постоянно слегка бьет током, иногда даже не поймёшь от чего: прикоснулся к двери - проскочила искра, захотел взять ножницы - стрельнуло от ножниц. В темноте заметил, что искры проскакивают между разными металлическими предметами, не связанными с генератором: в дипломате с инструментом проскакивали искорки между отвёртками, плоскогубцами, паяльником.

Лампочки загораются сами по себе, без проводов.

Озоном пахнет по всему дому, как после грозы.

Заключение

Все детали обойдутся где-то в 50 грн (5$), это старый телевизор и конденсаторы. Сейчас я разрабатываю принципиально новую схему, с целью без особых затрат получать метровые разряды. Вы спросите: какое применение данной схемы? Отвечу, что применения есть, но обсуждать их нужно уже в другой теме.

На этом у меня всё, соблюдайте осторожность при работе с высоким напряжением.

Генераторы импульсов - это устройства, которые способны создавать волны определенной формы. Тактовая частота в данном случае зависит от многих факторов. Основным предназначением генераторов принято считать синхронизацию процессов у электроприборов. Таким образом, у пользователя есть возможность настраивать различную цифровую технику.

Как пример можно привести часы, а также таймеры. Основным элементом устройств данного типа принято считать адаптер. Дополнительно в генераторы устанавливаются конденсаторы и резисторы вместе с диодами. К основным параметрам устройств можно отнести показатель возбуждения колебаний и отрицательного сопротивления.

Генераторы с инверторами

Сделать генератор импульсов своими руками с инверторами можно и в домашних условиях. Для этого адаптер потребуется бесконденсаторного типа. Резисторы лучше всего использовать именно полевые. Параметр передачи импульса у них находится на довольно высоком уровне. Конденсаторы к устройству необходимо подбирать исходя из мощности адаптера. Если его выходное напряжение составляет 2 В, то минимальная должна находиться на уровне 4 пФ. Дополнительно важно следить за параметром отрицательного сопротивления. В среднем он обязан колебаться в районе 8 Ом.

Модель прямоугольных импульсов с регулятором

На сегодняшний день генератор прямоугольных импульсов с регуляторами является довольно распространенным. Для того чтобы у пользователя была возможность настраивать предельную частоту устройства, необходимо использовать модулятор. На рынке производителями они представлены поворотного и кнопочного типа. В данном случае лучше всего остановиться на первом варианте. Все это позволит более тонко проводить настройку и не бояться за сбой в системе.

Устанавливается модулятор в генератор прямоугольных импульсов непосредственно на адаптер. При этом пайку необходимо производить очень аккуратно. В первую очередь следует хорошо прочистить все контакты. Если рассматривать бесконденсаторные адаптеры, то у них выходы находятся с верхней стороны. Дополнительно существуют аналоговые адаптеры, которые часто выпускаются с защитной крышкой. В этой ситуации ее необходимо удалить.

Для того чтобы у устройства была высокая пропускная способность, необходимо резисторы устанавливать попарно. Параметр возбуждения колебаний в данном случае обязан находиться на уровне Как основную проблему генератор прямоугольных импульсов (схема показана ниже) имеет резкое повышение рабочей температуры. В данном случае следует проверить отрицательное сопротивление бесконденсаторного адаптера.

Генератор перекрывающих импульсов

Чтобы сделать генератор импульсов своими руками, адаптер лучше всего использовать аналогового вида. Регуляторы в данном случае применять не обязательно. Связано это с тем, что уровень отрицательного сопротивления может превысить 5 Ом. В результате на резисторы оказывается довольно большая нагрузка. Конденсаторы к устройству подбираются с емкостью не менее 4 Ом. В свою очередь адаптер к ним подсоединяется только выходными контактами. Как основную проблему генератор импульсов имеет асимметричность колебаний, которая возникает вследствие перегрузки резисторов.

Устройство с симметричными импульсами

Сделать простой генератор импульсов такого типа можно только с использованием инверторов. Адаптер в такой ситуации лучше всего подбирать аналогового типа. Стоит он на рынке намного меньше, чем бесконденсаторная модификация. Дополнительно важно обращать внимание на тип резисторов. Многие специалисты для генератора советуют подбирать кварцевые модели. Однако пропускная способность у них довольно низкая. В результате параметр возбуждения колебаний никогда не превысит 4 мс. Плюс к этому добавляется риск перегрева адаптера.

Учитывая все вышесказанное, целесообразнее использовать полевые резисторы. в данном случае будет зависеть от их расположения на плате. Если выбирать вариант, когда они устанавливаются перед адаптером, в этом случае показатель возбуждения колебаний может дойти до 5 мс. В противной ситуации на хорошие результаты можно не рассчитывать. Проверить генератор импульсов на работоспособность можно просто подсоединив блок питания на 20 В. В результате уровень отрицательного сопротивления обязан находиться в районе 3 Ом.

Чтобы риск перегрева был минимальным, дополнительно важно использовать только емкостные конденсаторы. Регулятор в такое устройство устанавливать можно. Если рассматривать поворотные модификации, то как вариант подойдет модулятор серии ППР2. По своим характеристикам он на сегодняшний день является довольно надежным.

Генератор с триггером

Триггером называют устройство, которое отвечает за передачу сигнала. На сегодняшний день они продаются однонаправленные или двухнаправленные. Для генератора подходит только первый вариант. Устанавливается вышеуказанный элемент возле адаптера. При этом пайку необходимо проделывать только после тщательной зачистки всех контактов.

Непосредственно адаптер можно выбрать даже аналогового типа. Нагрузка в данном случае будет небольшой, а уровень отрицательного сопротивления при удачной сборке не превысит 5 Ом. Параметр возбуждения колебаний с триггером в среднем составляет 5 мс. Основную проблему генератор импульсов имеет такую: повышенная чувствительность. В результате с блоком питания выше 20 В указанные устройства работать не способны.

повышенной нагрузки?

Обратим внимание на микросхемы. Генераторы импульсов указанного типа подразумевают использование мощного индуктора. Дополнительно следует подбирать только аналоговый адаптер. В данном случае необходимо добиться высокой пропускной способности системы. Для этого конденсаторы применяются только емкостного типа. Как минимум отрицательное сопротивление они должны быть способны выдерживать на уровне 5 Ом.

Резисторы для устройства подходят самые разнообразные. Если выбирать их закрытого типа, то необходимо предусмотреть для них раздельный контакт. Если все же остановиться на полевых резисторах, то изменение фазы в данном случае будет происходить довольно долго. Тиристоры для таких устройств практически бесполезны.

Модели с кварцевой стабилизацией

Схема генератора импульсов данного типа предусматривает использование только бесконденсаторного адаптера. Все это необходимо для того, чтобы показатель возбуждения колебаний был как минимум на уровне 4 мс. Все это позволит также сократить термальные потери. Конденсаторы для устройства подбираются исходя из уровня отрицательного сопротивления. Дополнительно необходимо учитывать тип блока питания. Если рассматривать импульсные модели, то у них уровень выходного тока в среднем находится на отметке 30 В. Все это в конечном счете может привести к перегреву конденсаторов.

Чтобы избежать таких проблем, многие специалисты советуют устанавливать стабилитроны. Припаиваются они непосредственно на адаптер. Для этого необходимо прочистить все контакты и проверить напряжение катода. Вспомогательные адаптеры для таких генераторов также используются. В этой ситуации они играют роль коммутируемого трансивера. В результате параметр возбуждения колебаний повышается до 6 мс.

Генераторы с конденсаторами РР2

Складывается генератор высоковольтных импульсов с конденсаторами данного типа довольно просто. На рынке найти элементы для таких устройств не составляет никаких проблем. Однако важно подобрать качественную микросхему. Многие с этой целью приобретают многоканальные модификации. Однако стоят они в магазине довольно дорого по сравнению с обычными типами.

Транзисторы для генераторов подходят больше всего однопереходные. В данном случае параметр отрицательного сопротивления не должен превышать 7 Ом. В такой ситуации можно надеяться на стабильность работы системы. Чтобы повысить чувствительность устройства, многие советуют применять стабилитроны. При этом триггеры используются крайне редко. Связано это с тем, что пропускная способность модели значительно снижается. Основной проблемой конденсаторов принято считать усиление предельной частоты.

В результате смена фазы происходит с большим отрывом. Чтобы наладить процесс должным образом, необходимо вначале работы настроить адаптер. Если уровень отрицательного сопротивления находится на отметке 5 Ом, то предельная частота устройства должна составлять примерно 40 Гц. В результате нагрузка с резисторов снимается.

Модели с конденсаторами РР5

Генератор высоковольтных импульсов с указанными конденсаторами можно встретить довольно часто. При этом использоваться он способен даже с блоками питания на 15 В. Пропускная способность его зависит от типа адаптера. В данном случае важно определиться с резисторами. Если подбирать полевые модели, то адаптер целесообразнее устанавливать именно бесконденсаторного типа. В том случае параметр отрицательного сопротивления будет находиться в районе 3 Ом.

Стабилитроны в данном случае используются довольно часто. Связано это с резким понижением уровня предельной частоты. Для того чтобы ее выровнять, стабилитроны подходят идеально. Устанавливаются они, как правило, возле выходного порта. В свою очередь, резисторы лучше всего припаивать возле адаптера. Показатель колебательного возбуждения зависит от емкости конденсаторов. Рассматривая модели на 3 пФ, отметим, что вышеуказанный параметр никогда не превысит 6 мс.

Основные проблемы генератора

Основной проблемой устройств с конденсаторами РР5 принято считать повышенную чувствительность. При этом термальные показатели также находятся на невысоком уровне. За счет этого часто возникает потребность в использовании триггера. Однако в данном случае необходимо все же замерить показатель выходного напряжения. Если он при блоке в 20 В превышает 15 В, то триггер способен значительно улучшить работу системы.

Устройства на регуляторах МКМ25

Схема генератора импульсов с данным регулятором включает в себя резисторы только закрытого типа. При этом микросхемы можно использовать даже серии ППР1. В данном случае конденсаторов требуется только два. Уровень отрицательного сопротивления напрямую зависит от проводимости элементов. Если емкость конденсаторов составляет менее 4 пФ, то отрицательное сопротивление может повыситься даже до 5 Ом.

Чтобы решить данную проблему, необходимо использовать стабилитроны. Регулятор в данном случае устанавливается на генератор импульсов возле аналогового адаптера. Выходные контакты при этом необходимо тщательно зачистить. Также следует проверить пороговое напряжение самого катода. Если оно превышает 5 В, то подсоединять регулируемый генератор импульсов можно на два контакта.

Многие из нас хоть раз в жизни видели в интернете или в реальной жизни фотографии Высоковольтных генераторов, или сами их делали. Многие представленные в интернете схемы довольно мощные, их выходное напряжение составляет от 50 до 100 Киловольт. Мощность, как и напряжение тоже довольно высокая. Но их питание – главная проблема. Источник напряжения должен быть подобающей генератору мощности, должен уметь отдавать долговременно большой ток.

Есть 2 варианта питания ВВ генераторов:

1)аккумулятор,

2)сетевой источник питания.

Первый вариант позволяет запустить устройство далеко «от розетки». Однако, как раннее было замечено, устройство будет потреблять большую мощность и, следовательно, аккумулятор должен обеспечивать эту мощность (если вы хотите, чтобы генератор работал «на все 100»). Аккумуляторы такой мощности довольно большие и автономным устройство с таким аккумулятором не назовёшь. Если осуществлять питание от сетевого источника, то об автономности тоже говорить не придётся, так как генератор буквально «не оторвёшь от розетки».

Моё же устройство вполне автономно, так как потребляет от встроенного аккумулятора не так уж и много, однако вследствие низкого потребления мощность тоже не велика – около 10-15W. Но дугу с трансформатора получить можно, напряжение около 1 Киловольта. С умножителя напряжения по выше – 10-15 Кв.

Ближе к конструкции…

Так как этот генератор для серьёзных целей не планировал, я поместил все его «внутренности» в картонную коробку (как бы смешно это не звучало, но это так. Я прошу не судить строго мою конструкцию, так как высоковольтной технике я не специалистL). У моего устройства присутствуют 2 Li-ionаккумулятора, ёмкостью 2200 мА/ч. Их зарядка осуществляется с помощью линейного стабилизатора на 8 вольт: L7808. Он также находится в корпусе. Также имеется два зарядных устройства: от сети (12 в., 1250 мА/ч.) и от прикуривателя автомобиля.

Сама схема генерации высокого напряжения состоит из нескольких частей:

1)фильтр входного напряжения,

2)задающий генератор, построенный на мультивибраторе,

3)силовые транзисторы,

4)высоковольтный повышающий трансформатор (хочу отметить, что сердечник не должен иметь зазор, наличие зазора приводить к увеличению тока потребления и вследствие выход из строя силовых транзисторов).

Также к высоковольтному выходу можно подключить «симметричный» умножитель напряжения или… люминесцентную лампу, тогда ВВ генератор превращается в фонарь. Хотя на самом деле изначально это устройство планировалось сделать как фонарь. Схема преобразователя выполнена на макетной плате, при желании можете создать печатную плату. Максимальное потребление схемы – до 2-3 Ампера, это стоит учитывать при выборе выключателей. Стоимость устройства зависит от того, где вы брали компоненты. Я большую половину комплектации нашёл у себя в ящике или в коробке для хранения радиодеталей. Купить мне пришлось всего лишь линейный стабилизатор L7808, ИВЛМ1-1/7 (на самом деле сюда вставил ради интереса, а купил из любопытства J), также мне пришлось купить электронный трансформатор для галогенных ламп (из него я взял всего лишь трансформатор). Провод для намотки вторичной (повышающей, высоковольтной) обмотки взял из давно сгоревшего строчного трансформатора (ТВС110ПЦ), и Вам советую делать тоже самое. Так провод в строчных трансформаторах высоковольтный и с пробоем изоляции проблем быть не должно. С теорией вроде бы разобрались – теперь перейдём к практике…

Внешний вид…

Рис.1 – вид на управляющую панель:

1)индикаторы работоспособности

2)индикатор присутствия зарядного напряжения

3)вход от 8 до 25 вольт (для зарядки)

4)кнопка включения заряда аккумулятора (включать только при подключённом зарядном устройстве)

5)переключатель аккумуляторов (верхнее положение – основной, нижнее - запасной)

6)выключатель ВВ генератора

7)высоковольтный выход

На лицевой панели присутствуют 3 индикатора работоспособности. Их здесь такое количество, потому что семисегментный индикатор является моим инициалом (на нём светиться первая буква моего имени: «А»J), светодиоды над выключателем и переключателем изначально планировались быть дополнительными индикаторами заряда батареи, но со схемой индикации возникла проблема, а отверстия в корпусе уже были сделаны. Пришлось поставить светодиоды, но уже в качестве просто индикаторов, дабы не портить внешний вид.

Рис.2 – вид на вольтметр и индикатор:

8)вольтметр – показывает напряжение на аккумуляторе

9)индикатор – ИВЛМ1-1/7

10)предохранитель (от случайного включения)

Вакуумно-люминесцентный индикатор установил ради интереса, так как это мой первый индикатор такого типа.

Рис.3 – внутренний вид:

11)корпус

12)аккумуляторы (12,1-основной, 12,2-запасной)

13)линейный стабилизатор 7808 (для зарядки аккумуляторов)

14)плата преобразователя

15)теплоотвод с полевым транзистором КП813А2

Тут, думаю нечего пояснять.

Рис.4 – зарядные устройства:

16)от сети 220 в. (12 в., 1250 мА.)

17)от прикуривателя автомобиля

Рис.5 – нагрузки для АВВГ:

18)9 W люминесцентная лампа

19)«симметричный» умножитель напряжения

Рис.6 – принципиальная схема:

USB 1 – стандартный выход USB

BAT 1, 2 – Li - ion 7,4 в. 2200 мА/ч (18650 Х 2)

R 1, 2, 3, 4 – 820 Ом

R 5 – 100 КОм

R 6, 7 – 8,2 Ом

R 8 – 150 Ом

R 9, 12 – 510 Ом

R 10, 11 – 1 КОм

L 1 – сердечник от дросселя из энергосберегающей лампы, 10 витков по 1,5 мм.

C 1 – 470 мкФ 16 в.

C 2, 3 – 1000 мкФ 16 в.

C 4, 5 – 47 нФ 250 в.

C 6 – 3,2 нФ 1,25 Кв.

C 7 – 300 пФ 1,6 Кв.

С8 – 470 пФ 3 Кв.

С9, 10 – 6,3 нФ

C 11, 12, 13, 14 – 2200 пФ 5 Кв.

D 1 – красный светодиод

D 2 – АЛ307ЕМ

D 3 – АЛС307ВМ

VD 1, 2, 3, 4 – КЦ106Г

HL 1 – ЗЛС338Б1

HL 2 – NE 2

HL 3 – ИВЛМ1-1/7

HL 4 – ЛДС 9 W

IC 1 – L 7808

SB 1 – кнопка 1А

SA 1 – выключатель 3А (ON - OFF с неоновой лампой)

SA 2 – переключатель 6А (ON - ON )

SA 3 – выключатель 1А (ON - OFF )

PV 1 –М2003-1

T 1 – повышающий трансформатор:

ВВ обмотка: 372 витков ПЭВ-2 0.14мм. R=38.6ом

Первичная обмотка: 2 по 7 витков ПЭВ-… 1мм. R=0.4ом

VT 1 – КТ819ВМ

VT 2 – КП813А2

VT 3, 4 – КТ817Б

Общее количество компонентов: 53.

Без чего МОЖЕТ работать эта схема, на самом деле много без чего: IC1, R1, 2, 3, 4, 5, 8, C1, 2, 3, 4, 5, 7, 8,

Пояснения к схеме:

Минус общий, идёт от входа USB до платы преобразователя. Плюсы от аккумуляторов идут к переключателю, от него уже один вывод к выключателю (SA1), а от него к преобразователю. Также плюс идет к вольтметру (PV1), через резистор к катоду индикатора и к анодам светодиодов (для каждого светодиода отдельный резистор). Зарядка осуществляется после того как на вход USB подаётся напряжение от 8 до 25 вольт, а также после нажатия кнопки (SB1), светодиод (D1) загорается после того как подаётся напряжение для зарядки (контролировать процесс заряда можно с помощью вольтметра PV1).

Переключение между основным и запасным аккумуляторами осуществляется с помощью переключателя (SA1), дальше силовой плюс идёт к выключателю (SA2) (через выключатель SA3) ВВ генератора, неоновая лампа (HL2) находится внутри выключателя. Дальше силовые выводы поступают на блок конденсаторов и задающий генератор, построенный на мультивибраторе(VT3, 4. C9, 10. R9, 10, 11, 12), транзисторы КТ817Б можно заменить на любые другие аналоги, от него импульсы поступают на базу и затвор транзисторов(VT1, VT2), транзисторыможно использовать менее или более мощные аналоги. Здесь использованы полевой и биполярный транзисторы, сделано это для того, чтобы снизить потребление. После трансформатора высокое напряжение поступает на группы анодов-сегментов вакуумно-люминесцентного индикатора, а после на ВВ выход.

Потребление (как фонарь): за 1 минуту схема разряжает аккумулятор на 0,04 В. (40 милливольт.). Если генератор будет работать 25 минут, следовательно, разрядится на 1 вольт (25*0,04).

Здравствуйте. Сегодня речь пойдет об очень мощной и крутой самоделке. Сегодня я соберу мощный высоковольтный генератор напряжением около 25 кВ. Данную схему я собираю уже не в первый раз, так что каких то сложностей нет. Постараюсь объяснить все коротко и просто
Начну пожалуй со схемы высоковольтного генератора. Нашел ее еще когда собирал , да и сохранил на всякий случай. Схема всего из десятка компонентов
Как говорил схему собирал для второго осциллятора, схема сейчас успешно работает на сварке. Нижняя плата и есть высоковольтный генератор


Пока собирал успел наиграться с дугой иногда достигающей 3х сантиметром, что равнялось примерно 30 кВ. Еще тогда придумал собрать для себя такой же генератор, надо было только подходящие компоненты собрать и вот пришло время

Нашел цветной телевизор советского производства и вырвал с него плату строчной развертки


Собственно с этой платы нужны только строчный трансформатор и конденсатор к73-17 на 400В 0.47 мкФ. На первом генераторе у меня стояла их пара.
Плату очистил от старых дорожек болгаркой, строчный трансформатор установил на старое место намотав две обмотки по 5 витков. Из такого же трансформатора изготовил дроссель, который чуть позже переделаю.


Приступил к сборке управляющей части схемы. Монтаж будет навесной, не хочу морочится платой. Установил полевые транзисторы 40N60 на радиатор, через изолирующие прокладки


На следующем этапе сборки припаял мощные трехамперные диоды Шотки


Дело за малым припаять конденсатор между стоками транзисторов и припаять резисторы 390 Ом в затворы. Стабилитроны я не ставил, так как их нет у меня, но схема отлично работает и без них


Припаял трансформатор к стокам и перемотал дроссель, так как индуктивность предыдущего слишком мала. Новый дроссель индуктивностью 50 мкГн.

Пора и попробовать запустить высоковольтный генератор. Подключаю плату к . На фото дуга примерно пол сантиметра, что равно 5кВ. Питание 20В


Попробовал раздвинуть дугу до 2,5 см, напряжение поднялось до 25кВ. Дуга стала широкой и мошной, сигарету в доли секунды зажигает 🙂 Но начал плавиться провод и пришлось прервать эксперимент


Что бы провода не подгорали, один вывод высоковольтной обмотки подключил к саморезу закрученному в плату, а на второй прикрутил болт.
Питание подал 20В, ток холостого хода 0,6А




Теперь попробую разжечь дугу до 25 кВ и сделать замер. Напряжение просело до 13,2В, ток потребления 6,25А. Потребляемая мощность 82,5Вт, карандаш загорается вообще без проблем




К сожалению мой лабораторный не может разжечь дугу посильней и так трансформатор перегружен. Надо найти что то мощнее и посмотреть, на что еще способен высоковольтный генератор
Я тут снял коротенькое видео работы генератора, надеюсь вам будет интересно.

А пока грузил это видео, нашел еще одно интересное видео работы данного генератора от 30В, ребята это вообще жесть

Поделиться