Первый и второй законы менделя. Законы Менделя Г мендель 1.2.3 законы менделя

МЕНДЕЛЯ ЗАКОНЫ МЕНДЕЛЯ ЗАКОНЫ

установленные Г. Менделем закономерности распределения в потомстве наследств, признаков. Основой для формулировки М. з. послужили многолетние (1856-63) опыты по скрещиванию неск. сортов гороха. Современники Г. Менделя не смогли оценить важности сделанных им выводов (его работа была доложена в 1865 и вышла в свет в 1866), и лишь в 1900 эти закономерности были переоткрыты и правильно оценены независимо друг от друга К. Корренсом, Э. Чермаком и X. Де Фризом. Выявлению этих закономерностей способствовало применение строгих методов подбора исходного материала, спец. схемы скрещиваний и учёта результатов экспериментов. Признание справедливости и значения М. з. в нач. 20 в. связано с определ. успехами цитологии и формированием ядерной гипотезы наследственности. Механизмы, лежащие в основе М. з., были выяснены благодаря изучению образования половых клеток, в частности поведения хромосом в мейозе, и доказательству хромосомной теории наследственности.

Закон единообразия гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку. При этом все гибриды могут иметь фенотип одного из родителей (полное доминирование), как это имело место в опытах Менделя, или, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения могут проявить признаки обоих родителей (кодоминировапие). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготны - Аа), а значит, и по фенотипу.

Закон расщепления , или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определ. соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения. Так, в случае полного доминирования выявляются 75% особей с доминантным и 25% с рецессивным признаком, т. е. два фенотипа в отношении 3:1 (рис. 1). При неполном доминировании и кодомииировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% - фенотипы исходных родительских форм, т. е. наблюдают расщепление 1:2:1. В основе второго закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), к-рое обеспечивает образование у гибридов первого поколения гамет двух типов, в результате чего среди гибридов второго поколения выявляются особи трёх возможных генотипов в соотношении 1АА:2Аа:1аа. Конкретные типы взаимодействия аллелей и дают расшепления по фенотипу в соответствии со вторым законом Менделя.

Закон независимого комбинирования (наследования) признаков , или третий закон Менделя, утверждает, что каждая пара альтернативных признаков ведёт себя в ряду поколений независимо друг от друга, в результате чего среди потомков второго поколения в определ. соотношении появляются особи с новыми (по отношению к родительским) комбинациями признаков. Напр., при скрещивании исходных форм, различающихся по двум признакам, во втором поколении выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (случай полного доминирования). При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два - новые. Этот закон основан на независимом поведении (расщеплении) неск. пар гомологичных хромосом (рис. 2). Напр., при дигибридном скрещивании это приводит к образованию у гибридов первого поколения 4 типов гамет (АВ, Ab, aB, ab) и после образования зигот - закономерному расщеплению по генотипу и соответственно по фенотипу.

Как один из М. з. в генетич. лит-ре часто упоминают закон чистоты гамет. Однако, несмотря на фундаментальность этого закона (что подтверждают результаты тетрадного анализа), он не касается наследования признаков и, кроме того, сформулирован не Менделем, а У. Бэтсоном (в 1902).

Для выявления М. з. в их классич. форме необходимы: гомозиготность исходных форм, образование у гибридов гамет всех возможных типов в равных соотношениях, что обеспечивается правильным течением мейоза; одинаковая жизнеспособность гамет всех типов, равная вероятность встречи любых типов гамет при оплодотворении; одинаковая жизнеспособность зигот всех типов. Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении, либо к искажению соотношения разл. гено- и фенотипов. М. з., вскрывшие дискретную, корпускулярную природу наследственности, имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. Для полиплоидов выявляют принципиально те же закономерности наследования, однако числовые соотношения гено- и фенотипич. классов отличаются от таковых у диплоидов. Соотношение классов изменяется и у диплоидов в случае сцепления генов («нарушение» третьего закона Менделя). В целом М. з. справедливы для аутосомпых генов с полной пенетрантностью и постоянной экспрессивностью. При локализации генов в половых хромосомах или в ДНК органоидов (пластиды, митохондрии) результаты реципроксных скрещиваний могут различаться и не следовать М. з., чего не наблюдается для генов, расположенных в аутосомах. М. з. имели важное значение - именно на их основе происходило интенсивное развитие генетики на первом этапе. Они послужили основой для предположения о существовании в клетках (гаметах) наследств, факторов, контролирующих развитие признаков. Из М. з. следует, что эти факторы (гены) относительно постоянны, хотя и могут находиться в разл. состояниях, парны в соматич. клетках и единичны в гаметах, дискретны и могут вести себя независимо по отношению друг к другу. Всё это послужило в своё время серьёзным аргументом против теорий «слитной» наследственности и было подтверждено экспериментально.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

Ме́нделя зако́ны

Основные закономерности наследования, открытые Г. Менделем . В 1856-1863 гг. Мендель провёл обширные, тщательно спланированные опыты по гибридизации растений гороха. Для скрещиваний он отбирал константные сорта (чистые линии), каждый из которых при самоопылении устойчиво воспроизводил в поколениях одни и те же признаки. Сорта различались альтернативными (взаимоисключающими) вариантами какого-либо признака, контролируемого парой аллельных генов (аллелей ). Напр., окраской (жёлтая или зелёная) и формой (гладкая или морщинистая) семян, длиной стебля (длинный или короткий) и т.д. Для анализа результатов скрещиваний Мендель применил математические методы, что позволило ему обнаружить ряд закономерностей в распределении родительских признаков у потомков. Традиционно в генетике принимают три закона Менделя, хотя сам он формулировал лишь закон независимого комбинирования. Первый закон, или закон единообразия гибридов первого поколения, утверждает, что при скрещивании организмов, различающихся аллельными признаками, в первом поколении гибридов проявляется лишь один из них – доминантный, а альтернативный ему, рецессивный, остаётся скрытым (см. Доминантность, Рецессивность ). Напр., при скрещивании гомозиготных (чистых) сортов гороха с жёлтой и зелёной окраской семян у всех гибридов первого поколения окраска была жёлтой. Значит, жёлтая окраска – доминантный признак, а зелёная – рецессивный. Первоначально этот закон называли законом доминирования. Вскоре было обнаружено его нарушение – промежуточное проявление обоих признаков, или неполное доминирование, при котором, однако, сохраняется единообразие гибридов. Поэтому современное название закона более точное.
Второй закон, или закон расщепления, гласит, что при скрещивании между собой двух гибридов первого поколения (или при их самоопылении) во втором поколении проявляются в определённом соотношении оба признака исходных родительских форм. В случае жёлтой и зелёной окраски семян их соотношение было 3:1, т. е. расщепление по фенотипу происходит так, что у 75% растений окраска семян доминантная жёлтая, у 25% – рецессивная зелёная. В основе такого расщепления лежит образование гетерозиготными гибридами первого поколения в равном отношении гаплоидных гамет с доминантными и рецессивными аллелями. При слиянии гамет у гибридов 2-го поколения образуется 4 генотипа – два гомозиготных, несущих только доминантные и только рецессивные аллели, и два гетерозиготных, как у гибридов 1-го поколения. Поэтому расщепление по генотипу 1:2:1 даёт расщепление по фенотипу 3:1 (жёлтую окраску обеспечивает одна доминантная гомозигота и две гетерозиготы, зелёную – одна рецессивная гомозигота).
Третий закон, или закон независимого комбинирования, утверждает, что при скрещивании гомозиготных особей, отличающихся по двум и более парам альтернативных признаков, каждая из таких пар (и пар аллельных генов) ведёт себя независимо от других пар, т. е. и гены, и соответствующие им признаки наследуются в потомстве независимо и свободно комбинируются во всех возможных сочетаниях. Он основан на законе расщепления и выполняется в том случае, если пары аллельных генов расположены в разных гомологичных хромосомах.
Часто как один из законов Менделя приводится и закон чистоты гамет, утверждающий, что в каждую половую клетку попадает только один аллельный ген. Но этот закон был сформулирован не Менделем.
Непонятый современниками, Мендель обнаружил дискретную («корпускулярную») природу наследственности и показал ошибочность представлений о «слитной» наследственности. После переоткрытия забытых законов основанное на экспериментах учение Менделя получило название менделизм. Его справедливость была подтверждена хромосомной теорией наследственности .

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Смотреть что такое "МЕНДЕЛЯ ЗАКОНЫ" в других словарях:

    - (или правила), закономерности распределения в потомстве наследственных факторов, названных позднее генами. Сформулированы Г.И. Менделем. Включают законы: единообразия гибридов первого поколения, расщепления гибридов второго поколения,… … Современная энциклопедия

    Менделя законы - * Мендэля законы * Mendel’s laws or M. Rules … Генетика. Энциклопедический словарь

    - (или правила) сформулированные Г. И. Менделем закономерности распределения в потомстве наследственных факторов, названных позднее генами. Включают: закон единообразия гибридов первого поколения; закон расщепления гибридов второго поколения; закон … Большой Энциклопедический словарь

    - (или правила), сформулированные Г. И. Менделем закономерности распределения в потомстве наследственных факторов, названных позднее генами. Включают: закон единообразия гибридов первого поколения; закон расщепления гибридов второго поколения;… … Энциклопедический словарь

    Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,… … Википедия

    Менделя законы - Открытие хромосом и новое открытие законов Менделя Генетика, занятая механизмами биологического наследования, возникла внутри эволюционной теории. Известно, что уже в 1866 г. Мендель сформулировал фундаментальные законы генетики. Он передал… … Западная философия от истоков до наших дней

    МЕНДЕЛЯ ЗАКОНЫ - (или правила) , сформулированные Г. Менделем закономерности распределения в потомстве наследств, признаков. Выявлению этих закономерностей способствовало применение Г. Менделем впервые гибридологич. анализа (спец. схемы скрещиваний и статистич.… … Сельско-хозяйственный энциклопедический словарь

Введение.

Генетика – наука, изучающая закономерности наследственности и изменчивости живых организмов.

Человеком давно отмечены три явления, относящиеся к наследственности: во-первых, сходство признаков потомков и родителей; во-вторых, отличия некоторых (иногда многих) признаков потомков от соответствующих родительских признаков; в-третьих, возникновение в потомстве признаков, которые были лишь у далеких предков. Преемственность признаков между поколениями обеспечивается процессом оплодотворения. С незапамятных времен человек стихийно использовал свойства наследственности в практических целях – для выведения сортов культурных растений и пород домашних животных.

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков

Чарльз Дарвин определял наследственность как свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение, а изменчивость как свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки.

Наследование признаков осуществляется через размножение. При половом размножении новые поколения возникают в результате оплодотворения. Материальные основы наследственности заключены в половых клетках. При бесполом или вегетативном размножении новое поколение развивается или из одноклеточных спор, или из многоклеточных образований. И при этих формах размножения связь между поколениями осуществляется через клетки, в которых заключены материальные основы наследственности (элементарные единицы наследственности) – гены – представляют собой участки ДНК хромосом.

Совокупность генов, которую организм получает от родителей, составляет его генотип. Совокупность внешних и внутренних признаков – это фенотип. Фенотип развивается в результате взаимодействия генотипа и условий внешней среды. Так или иначе основой остаются признаки которые несут в себе гены.

Закономерности, по которым признаки передаются из поколения в поколение, первым открыл великий чешский ученый Грегор Мендель. Он открыл и сформулировал три закона наследования, которые легли в основу современной генетики.

Жизнь и научные исследования Грегора Иоганна Менделя.

Моравский монах и генетик растений. Иоганн Мендель родился 1822 году в местечке Хейнцендорф (ныне Гинчице в Чехии), где его отец владел небольшим крестьянским наделом. Грегор Мендель, по свидетельству знавших его, действительно был добрым и приятным человеком. После получения начального образования в местной деревенской школе и позже, по окончании коллегии пиаристов в Лейпнике он был в 1834 году принял в Троппаунскую императорско-королевскую гимназию в первый грамматический класс. Четырьмя годами спустя родители Иоганна в результате стечения многих, быстро следовавших друг за другом, несчастливых событий были полностью лишены возможности возмещать необходимые расходы, связанные с учебой, а их сын, будучи тогда лишь 16 лет от роду, вынужден был совершенно самостоятельно заботиться о собственном содержании. В 1843 году Мендель был принят в Августинский монастырь святого Томаша в Альтбрюнне, где и принял имя Грегор. В 1846 году Мендель слушал также лекции по хозяйствованию, садоводству и виноградарству в Философском институте в Брюнне. В 1848 году, завершив курс богословия, с глубоким почтением Мендель получил разрешение готовиться к экзаменам на степень доктора философии. Когда же в следующем году он укрепился в намерении экзаменоваться, то ему было вручено предписание занять место супплента императорско-королевской гимназии в Цнайме, чему он последовал с радостью.

В 1851 году настоятель монастыря направил Менделя учиться в венский университет, где он, среди прочего, изучал ботанику. После окончания университета Мендель преподавал естественные науки в местной школе. Благодаря этому шагу его материальное положение в корне изменилось. В столь необходимом для каждых занятий благотворном благополучии физического существования к нему, с глубоким почтением, вернулись и мужество и силы, и он в течение пробного года штудировал предписанные классические предметы с большим прилежанием и любовью. В свободные часы занимался он маленьким ботанико-минералогическим собранием, предоставленным в монастыре в его распоряжение. Его пристрастие к области естествознания становилось тем большим, чем большие возможности получал он отдаваться ему. Хотя упомянутый в этих занятиях был лишен какого-либо руководства, а путь автодидакта здесь, как ни в какой иной науке, труден и ведет к цели медленно, все же за оное время Мендель приобрел такую любовь к изучению природы, что он не жалел уже сил для заполнения изменившихся у него пробелов путем самообучения и следуя советам людей, обладавших практическим опытом. 3 апреля 1851 года «учительский корпус» училища принял решение пригласить для временного замещения профессорской должности каноника монастыря святого Томаша господина Грегора Менделя. Помологические успехи Грегора Менделя дали ему право на звездный титул и на временное исполнение должности супплента по естественной истории в приготовительном классе Технического училища. В первом семестре учебы он занимался только десять часов в неделю и только у Доплера. Во втором семестре он занимался в неделю уже по двадцать часов. Из них десять – физикой у Доплера, пять в неделю – зоологией у Рудольфа Кнера. Одиннадцать часов в неделю – ботаникой у профессора Фенцля: кроме лекций по морфологии и систематике, он проходил еще специальный практикум по описанию и определению растений. В третьем семестре он записался уже на тридцать два часа занятий в неделю: десять часов – физика у Доплера, десять – химия у Роттенбахера: всеобщая химия, медицинская химия, фармакологическая химия и практикум по аналитической химии. Пять – на зоологию у Кнера. Шесть часов занятий у Унгера, одного из первых цитологов в мире. В его лабораториях он изучал анатомию и физиологию растений и проходил практикум по технике микроскопии. И еще - раз в неделю на кафедре математики – практикум по логарифмированию и тригонометрии.

1850 год, жизнь складывалась неплохо. Мендель уже мог сам себя содержать, и пользовался у коллег большим уважением, ибо хорошо справляться со своими обязанностями, и был очень приятен в общении. Его любили ученики.

В 1851 году Грегор Мендель замахнулся на кардинальный вопрос биологии – на проблему изменчивости и наследственности. Именно тогда он начал проводить опыты по направленному культивированию растений. Мендель доставлял различные растения из дальних и ближних окрестностей Брюнна. Культивировал растения по группам в специально отведенной для каждой из них части монастырского сада при различных внешних условиях. Он занимался кропотливыми метеонаблюдениями. Больше всего экспериментов и наблюдений Грегор проводил с горохом, который, начиная с 1854-го, из года в год каждую весну высевал в маленьком садике под окнами прелатуры. На горохе оказалось не сложно ставить четкий гибридизационный опыт. Для этого нужно лишь вскрыть пинцетом крупный, хоть еще и не дозревший цветок, оборвать пыльники, и самостоятельно предопределять ему «пару» для скрещивания. Поскольку самоопыление исключено, сорта гороха представляют собою, как правило, «чистые линии» с неизменяющимися от поколения к поколению константными признаками, которые очерчены крайне четко. Мендель выделил признаки, определявшие межсортовые различия: окраску кожуры зрелых зерен и – отдельно – зерен незрелых, форму зрелых горошин, цвет «белка» (эндоспермы), длину оси стебля, расположение и окраску бутонов. Тридцать с лишним сортов использовал он в эксперименте, и каждый из сортов предварительно был подвергнут двухлетнему испытанию на «константность» , на «постоянство признаков» , на «чистоту кровей» – в 1854-м и в 1855-м. Восемь лет шли эксперименты с горохом. Сотни раз за восемь цветений своими руками он аккуратно обрывал пыльники и, набрав на пинцет пыльцу с тычинок цветка другого сорта, наносил ее на рыльце пестика. На десять тысяч растений, полученных в итоге скрещиваний и от самоопылившихся гибридов, было заведено десять тысяч паспортов. Записи в них аккуратны: когда родительское растение выращено, какие цветы у него были, чьей пыльцой произведено оплодотворение, какие горошины – желтые или зеленые, гладкие или морщинистые – получены, какие цветы – окраска по краям, окраска в центре – распустились, когда получены семена, сколько из них желтых, сколько зеленых, круглых, морщинистых, сколько из них отобрано для посадки, когда они высажены и так далее.

Результатом его исследований стал доклад «Опыты над растительными гибридами», который был прочитан брюннским естествоиспытателем в 1865-м. В докладе сказано: «Поводом для постановки опытов, которым посвящена настоящая статья, послужило искусственное скрещивание декоративных растений, производившееся с целью получения новых, различающихся по окраске форм. Для постановки дальнейших опытов с целью проследить развитие помесей в их потомстве дала толчок бросающаяся в глаза закономерность, с которой гибридные формы постоянно возвращались к своим родоначальным формам». Как это нередко случается в истории науки, работа Менделя, не сразу получила должное признание у современников. Итоги его опытов были обнародованы на заседании Общества естественных наук города Брюнна, а затем опубликованы в журнале этого Общества, но идеи Менделя в то время не нашли поддержки. Номер журнала с описанием революционной работы Менделя в течение тридцати лет пылился в библиотеках. Лишь в конце XIX века ученые, занимавшиеся проблемами наследственности, открыли для себя труды Менделя, и он смог получить (уже посмертно) заслуженное признание.

Формулировка 1 закона Менделя Закон единообразия первого поколения гибридов, или первый закон Менделя. При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных признаков, всё первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей




Формулировка 2 закона Менделя Закон расщепления, или второй закон Менделя Менделя При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.






Формулировка 3 закона Менделя Закон независимого наследования (третий закон Менделя) При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).(Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1)


Р АА ВВ аа bb х жёлтые, гладкие семеназелёные, морщинистые семена G (гаметы) АВаbаb F1F1 Аа Bb жёлтые, гладкие семена 100% 3 закон Менделя ДИГИБРИДНОЕ СКРЕЩИВАНИЕ. Для опытов в качестве материнского растения был взят горох с гладкими желтыми семенами, а в качестве отцовского – с зелеными морщинистыми семенами. У первого растения оба признака являлись доминантными (АВ), а у второго – оба рецессивными (аb



Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. (желтые и гладкие горошины) Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1. 9/16 желтыми гладкими горошинами, 3/16 с желтыми морщинистыми горошинами, 3/16 с зелёными гладкими горошинами, 1/16 с зелёными морщинистыми горошинами.


Задача 1.У спаниелей чёрный цвет шерсти доминирует над кофейным, а короткая шерсть – над длинной. Охотник купил собаку чёрного цвета с короткой шерстью и, чтобы быть уверенным, что она чистопородна, провёл анализирующее скрещивание. Родилось 4 щенка: 2 короткошерстных чёрного цвета, 2 короткошерстных кофейного цвета. Каков генотип купленной охотником собаки? Задачи на дигибридное скрещивание.


Задача 2. У томата красная окраска плода доминирует над желтой окраской, а высокий стебель - над низким стеблем. От скрещивания сорта с красными плодами и высоким стеблем и сорта с желтыми плодами и низким стеблем получили 28 гибридов во втором поколении. Гибриды первого поколения скрещивались между собой, получили 160 растений- гибридов второго поколения. Сколько типов гамет образует растение первого поколения? Сколько растений в первом поколении имеют красную окраску плода и высокий стебель? Сколько разных генотипов среди растений второго поколения с красной окраской плода и высоким стеблем? Сколько растений во втором поколении имеют желтую окраску плода и высокий стебель? Сколько растений во втором поколении имеют желтую окраску плода и низкий стебель?


Задача 3 У человека карий цвет глаз доминирует над голубым цветом, а способность владеть левой рукой рецессивна по отношению к праворукости. От брака голубоглазого мужчины-правши с кареглазой женщиной-левшой родился голубоглазый ребенок-левша. Сколько типов гамет образуется у матери? Сколько типов гамет образуется у отца? Сколько может быть разных генотипов среди детей? Сколько может быть разных фенотипов среди детей? Какова вероятность рождения в этой семье голубоглазого ребенка-левши (%)?


Задача 4 Хохлатость у кур доминирует над отсутствием хохла, а черная окраска оперения - над бурой. От скрещивания гетерозиготной черной курицы без хохла с гетерозиготным бурым хохлатым петухом получено 48 цыплят. Сколько типов гамет образуется у курицы? Сколько типов гамет образуется у петуха? Сколько разных генотипов будет среди цыплят? Сколько будет хохлатых черных цыплят? Сколько будет черных цыплят без хохла?


Задача 5 У кошек короткая шерсть сиамской породы доминирует над длинной шерстью персидской породы, а черная окраска шерсти персидской породы доминантна по отношению к палевой окраске сиамской. Скрещивались сиамские кошки с персидскими. При скрещивании гибридов между собой во втором поколении получено 24 котенка. Сколько типов гамет образуется у кошки сиамской породы? Сколько разных генотипов получилось во втором поколении? Сколько разных фенотипов получилось во втором поколении? Сколько котят во втором поколении похожи на сиамских кошек? Сколько котят во втором поколении похожи на персидских?


Решение задач на дом Вариант 1 1) Голубоглазый правша женился на кареглазой правше. У них родилось двое детей – кареглазый левша и голубоглазый правша. От второго брака этого мужчины с другой кареглазой правшой родилось 8 кареглазых детей, все правши. Каковы генотипы всех трёх родителей. 2) У человека ген лопоухости доминирует над геном нормальных прижатых ушей, а ген нерыжих волос над геном рыжих. Какого потомства можно ожидать от брака лопоухого рыжего, гетерозиготного по первому признаку мужчины с гетерозиготной нерыжей с нормальными прижатыми ушами женщиной. Вариант 2 1)У человека косолапость (Р) доминирует над нормальным строением стопы (Р) а нормальный обмен углеводов (О) над сахарным диабетом. Женщина, имеющая нормальное строение стопы и нормальный обмен веществ, вышла замуж за косолапого мужчину. От этого брака родилось двое детей, у одного из которых развилась косолапость, а у другого сахарный диабет. Определить генотип родителей по фенотипу их детей. Какие фенотипы и генотипы детей возможны в этой семье? 2) У человека ген карих глаз доминирует над геном голубых глаз, а умение владеть правой рукой над леворукостью. Обе пары генов расположены в разных хромосомах. Какими могут быть дети, если: отец левша, но гетерозиготен по цвету глаз, а мать голубоглаза, но гетерозиготна в отношении умения владеть руками.


Решим задачи 1. У человека нормальный обмен углеводов доминирует над рецессивным геном, ответственным за развитие сахарного диабета. Дочь здоровых родителей больна. Определите, может ли в этой семье родиться здоровый ребенок и какова вероятность этого события? 2. У людей карий цвет глаз доминирует над голубым. Способность лучше владеть правой рукой доминирует над леворукостью, гены обоих признаков находятся в разных хромосомах. Кареглазый правша женится на голубоглазой левше. Какое потомство следует ожидать в этой паре?

Закономерности наследования признаков при половом размножении были установлены Г. Менделем. Необходимо иметь четкое представление о генотипе и фенотипе, аллелях, гомо- и гетерозиготности, доминировании и его типах, типах скрещиваний, а также составлять схемы.

Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака, развитие которого обусловлено парой аллельных генов. Примерами моногибридного скрещивания, проведенного Г. Менделем, могут служить скрещивания гороха с такими хорошо заметными альтернативными признаками, как пурпурные и белые цветки, желтая и зеленая окраска незрелых плодов (бобов), гладкая и морщинистая поверхность семян, желтая и зеленая их окраска и др.

Единообразие гибридов первого поколения (первый закон Менделя).При скрещивании гороха с пурпурными (АА) и белыми (аа) цветками Мендель обнаружил, что у всех гибридных растений первого поколения (F 1) цветки оказались пурпурными (рис. 2).

Рисунок 2 Схема моногибридного скрещивания

При этом белая окраска цветка не проявлялась. При скрещивании растений, имеющих гладкую и морщинистую форму семян, у гибридов семена будут гладкими. Г. Мендель установил также, что все гибриды F 1 оказались единообразными (однородными) по каждому из семи исследуемых им признаков. Следовательно, у гибридов первого поколения из пары родительских альтернативных признаков проявляется только один, а признак другого родителя как бы исчезает.

Альтернативные признаки – это признаки взаимоисключающие, контрастные.

Явление преобладания у гибридов F 1 признаков одного из родителей Мендель назвал доминированием, а соответствующий признак – доминантным. Признаки, не проявляющиеся у гибридов F 1, он назвал рецессивными. Поскольку все гибриды первого поколения единообразны, это явление было названо первым законам Менделя, или законом единообразия гибридов первого поколения, а также правилом доминирования.

Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов окажется единообразным и будет нести признак одного из родителей.

Каждый ген имеет два состояния – «А» и «а», поэтому они составляют одну пару, а каждого из членов пары называют аллелем. Гены, расположенные в одних и тех же локусах (участках) гомологических хромосом и определяющие альтернативное развитие одного и того же признака, называются аллельными.

Например, пурпурная и белая окраска цветка гороха является доминантным и рецессивным признаками соответственно двум аллелям (А и а) одного гена. Благодаря наличию двух аллелей возможны два состояния организма: гомо- и гетерозиготные. Если организм содержит одинаковые аллели конкретного гена (АА или аа), то он называется гомозиготным по данному гену (или признаку), а если разные (Аа) – то гетерозиготным. Следовательно, аллель – это форма существования гена. Примером трехаллельного гена является ген, определяющий у человека систему группы крови АВО. Аллелей бывает и больше: для гена, контролирующего синтез гемоглобина человека, их известно много десятков.

Из гибридных семян гороха Мендель вырастил растения, которые подверг самоопылению, и образовавшиеся семена вновь высеял. В результате было получено второе поколение гибридов, или гибриды F 2 . Среди последних обнаружилось расщепление по каждой паре альтернативных признаков в соотношении примерно 3:1, т. е. три четверти растений имели доминантные признаки (пурпурные цветки, желтые семена, гладкие семена и т. д.) и одна четверть – рецессивные (белые цветки, зеленые семена, морщинистые семена и т. д.). Следовательно, рецессивный признак у гибрида F 1 не исчез, а только был подавлен и вновь проявился во втором поколении. Это обобщение позднее было названовторым законом Менделя, или законом расщепления.

Расщепление – это явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть – рецессивный.

Второй закон Менделя: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1 (рис. 3).

Рисунок 3 – Схема расщепления признаков

при скрещивании гибридов F 1

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Г. Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Закон чистоты гаметможно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадают только один ген из аллельной пары.

Следует иметь в виду, что использование гибридологического метода для анализа наследования признаков на любых видах животных или растений предусматривает проведение следующих скрещиваний:

    скрещивание родительских форм (Р), различающихся по одной (моногибридное скрещивание) или нескольким парам (полигибридное скрещивание) альтернативных признаков и получение гибридов первого поколения (F 1);

    скрещивание гибридов F 1 между собой и получение гибридов второго поколения (F 2);

    математический анализ результатов скрещивания.

В дальнейшем Мендель перешел к изучению дигибридного скрещивания.

Дигибридное скрещивание – это скрещивание, в котором участвуют две пары аллелей (парные гены – аллельные и располагаются только в гомологичных хромосомах).

При дигибридном скрещивании Г. Мендель изучал наследование признаков, за которые отвечают гены, лежащие в разных парах гомологичных хромосом. В связи с этим каждая гамета должна содержать по одному гену из каждой аллельной пары.

Гибриды, гетерозиготные по двум генам, называют дигетерозиготными, а в случае отличия их по трем и многим генам – три- и полигетерозиготными соответственно.

Более сложные схемы дигибридных скрещиваний, запись генотипов и фенотипов F 2 ведется с использованием решетки Пеннета. Рассмотрим пример такого скрещивания. Для скрещивания были взяты две исходные гомозиготные родительские формы: первая форма имела желтые и гладкие семена; вторая форма обладала зелеными и морщинистыми семенами (рис. 4).

Рисунок 4 – Дигибридное скрещивание растений гороха,

различающихся по форме и окраске семян

Желтый цвет и гладкие семена – доминантные признаки; зеленый цвет и морщинистые семена – рецессивные признаки. Гибриды первого поколения – скрещивались между собой. Во втором поколении наблюдалось расщепление по фенотипу в соотношении 9:3:3:1, или (3+1) 2 , после самоопыления гибридов F 1 в соответствии с законом расщепления вновь появились морщинистые и зеленые семена.

Родительские растения в этом случае имеют генотипы ААВВ и aabb, а генотип гибридов F 1 – АаВb, т. е. является дигетерозиготным.

Таким образом, при скрещивании гетерозиготных особей, отличающихся по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фенотипу в соотношении (3+1) п, где п – число пар альтернативных признаков.

Гены, определяющие развитие разных пар признаков, называются неаллельными.

Результаты дигибридного и полигибридного скрещивания зависят от того, располагаются гены, определяющие рассмотренные признаки, в одной или в разных хромосомах. Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха.

При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2 n = 14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако, Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

На основе проведенных исследований Мендель вывел третий закон – закон независимого наследования признаков, или независимого комбинирования генов.

Каждая пара аллельных генов (и альтернативных признаков, контролируемых ими) наследуется независимо друг от друга.

Закон независимого комбинирования генов составляет основу комбинативной изменчивости, наблюдаемой при скрещивании у всех живых организмов. Отметим также, что в отличие от первого закона Менделя, который справедлив всегда, второй закон действителен только для генов, локализованных в разных парах гомологичных хромосом. Это обусловлено тем, что негомологичные хромосомы комбинируются в клетке независимо друг от друга, что было доказано не только при изучении характера наследования признаков, но и прямым цитологическим методом.

При изучении материала обратите внимание на случаи нарушений закономерных расщеплений по фенотипу, вызванных летальным действием отдельных генов.

Наследственность и изменчивость. Наследственность и изменчивость являются важнейшими свойствами, характерными для всех живых организмов.

Наследственную, или генотипическую, изменчивость подразделяют на комбинативную и мутационную.

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

    Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Г. Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами – пример комбинативной изменчивости.

    Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

    Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

Пример комбинативной изменчивости. У цветка ночная красавица есть ген красного цвета лепестков А и ген белого цвета а. Организм Аа имеет розовый цвет лепестков. Таким образом, у ночной красавицы нет гена розового цвета, розовый цвет возникает при сочетании (комбинации) красного и белого гена.

У человека есть наследственное заболевание серповидноклеточная анемия. АА – норма, аа – смерть, Аа – СКА. При СКА человек не может переносить повышенных физических нагрузок, при этом он не болеет малярией, т. е. возбудитель малярии малярийный плазмодий не может питаться неправильным гемоглобином. Такой признак полезен в экваториальном поясе; для него нет гена, он возникает при сочетании генов А и а.

Таким образом, наследственная изменчивость усиливается благодаря комбинативной изменчивости. Возникнув, отдельные мутации оказываются в соседстве с другими мутациями, входят в состав новых генотипов, т. е. возникает множество сочетаний аллелей. Любая особь генетически уникальна (за исключением однояйцевых близнецов и особей, возникших за счет бесполого размножения клона, имеющего родоначальником одну клетку). Так, если допустить, что в каждой паре гомологичных хромосом имеется только одна пара аллельных генов, то для человека, у которого гаплоидный набор хромосом равен 23, число возможных генотипов составит 3 в 23 степени. Такое огромное количество генотипов в 20 раз превышает численность всех людей на Земле. Однако в действительности гомологичные хромосомы различаются по нескольким генам и в расчете не учтено явление кроссинговера. Поэтому количество возможных генотипов выражается астрономическим числом, и можно с уверенностью утверждать, что возникновение двух одинаковых людей практически невероятно (за исключением однояйцовых близнецов, возникших из одной оплодотворенной яйцеклетки). Отсюда, в частности, следует возможность достоверного определения личности по остаткам живых тканей, подтверждения или исключения отцовства.

Таким образом, обмен генами вследствие перекреста хромосом в первом делении мейоза, независимая и случайная перекомбинация хромосом в мейозе и случайность слияния гамет в половом процессе – три фактора, обеспечивающие существование комбинативной изменчивости. Мутационная изменчивость самого генотипа.

Мутации – это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны ученым Г. Де Фризом в 19011903 гг. и сводятся к следующему:

Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков;

Отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение;

Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными;

Вероятность обнаружения мутаций зависит от числа исследованных особей;

Сходные мутации могут возникать повторно;

Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма.

По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные, или точковые, мутации – результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена.

Такое изменение в гене воспроизводится при транскрипции в структуре и-РНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Хромосомные мутации (перестройки, или аберрации) – это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов:

Нехватка потеря концевых участков хромосомы;

Делеция выпадение участка хромосомы в средней ее части;

Дупликация двух- или многократное повторение генов, локализованных в определенном участке хромосомы;

Инверсия поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;

Транслокация изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

Геномные мутации – изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).

Полиплоидия кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (3 n), тетраплоидными (4 n), гексаплоидными (6 n), октаплоидными (8 n) и т. д. Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85 % полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.

Законы Менделя - это принципы передачи наследственных признаков от родителей к потомкам, названные в честь своего первооткрывателя . Объяснения научных терминов - в .

Законы Менделя справедливы только для моногенных признаков , то есть признаков, каждый из которых определяется одним геном. Те признаки, на проявление которых влияют два или несколько генов, наследуются по более сложным правилам.

Закон единообразия гибридов первого поколения (первый закон Менделя) (другое название – закон доминирования признаков): при скрещивании двух гомозиготных организмов, один из которых гомозиготен по доминантному аллелю данного гена, а другой – по рецессивному, все особи первого поколения гибридов (F1) будут одинаковыми по признаку, определяемому данным геном, и идентичными тому из родителей, который несет доминантный аллель. Все особи первого поколения от такого скрещивания будут гетерозиготными.

Предположим, мы скрестили кота черного окраса и кошку коричневого. Черный и коричневый окрас определяется аллелями одного и того же гена, аллель черного окраса В доминирует над аллелем коричневого b. Скрещивание можно записать как BB (кот) x bb (кошка). Все котята от этого скрещивания будут черными и иметь генотип Вb (рисунок 1).

Заметим, что рецессивный признак (коричневый окрас) на самом деле никуда не пропал, он замаскирован доминантным признаком и, как мы сейчас увидим, проявится в последующих поколениях.

Закон расщепления (второй закон Менделя) : при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении (F2) число потомков, идентичных по данному признаку доминантному родителю, будет в 3 раза больше, чем число потомков, идентичных рецессивному родителю. Другими словами, расщепление по фенотипу во втором поколении будет равно 3:1 (3 фенотипически доминантных: 1 фенотипически рецессивный). (расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении). По генотипу расщепление будет равно 1:2:1 (1 гомозигота по доминантному аллелю: 2 гетерозиготы: 1 гомозигота по рецессивному аллелю).

Такое расщепление происходит благодаря принципу, который получил название закона чистоты гамет . Закон чистоты гамет гласит: в каждую гамету (половую клетку – яйцеклетку или сперматозоид) попадает только один аллель из пары аллелей данного гена родительской особи. Когда гаметы сливаются при оплодотворении, происходит их случайное соединение, которое и приводит к данному расщеплению.

Возвращаясь к нашему примеру с кошками, предположим, ваши черные котята подросли, вы за ними не уследили, и двое из них произвели потомство – четырех котят.

И кот, и кошка гетерозиготы по гену окраса, они имеют генотип Bb. Каждый из них согласно закону чистоты гамет производит гаметы двух типов – B и b. В их потомстве будет 3 котенка черных (ВB и Bb) и 1 коричневый (bb) (Рис. 2) (На самом деле, эта закономерность статистическая, поэтому расщепление выполняется в среднем, и такой точности в реальном случае может и не наблюдаться).

Для наглядности результаты скрещивания на рисунке приведены в таблице, соответствующей так называемой решетке Пеннета (диаграмме, позволяющей быстро и ясно расписать конкретное скрещивание, которой часто пользуются генетики).

Закон независимого наследования (третий закон Менделя) - при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. скрещивании). Закон независимого расщепления выполняется только для генов, находящихся в негомологичных хромосомах (для несцепленных генов).

Ключевой момент здесь то, что разные гены (если они не находятся в одной хромосоме) наследуются независимо друг от друга. Продолжим наш пример из жизни кошек. Длина шерсти (ген L) и окрас (ген В) наследуются независимо друг от друга (расположены в разных хромосомах). Короткая шерсть (аллель L) доминирует над длинной (l), а черный окрас (B) – над коричневым b. Предположим, мы скрещиваем короткошерстного черного кота (BB LL) с длинношерстной коричневой кошкой (bb ll) .

В первом поколении (F1) все котята будут черными и короткошерстными, а генотип их будет Bb Ll. Однако коричневый окрас и длинношерстность никуда не делись – контролирующие их аллели просто «спрятались» в генотипе гетерозиготных животных! Скрестив кота и кошку из этих потомков, во втором поколении (F2) мы будем наблюдать расщепление 9:3:3:1 (9 короткошерстных черных, 3 длинношерстных черных, 3 короткошерстных коричневых и 1 длинношерстный коричневый). Почему так происходит и какие генотипы у этих потомков, показано в таблице.

В заключение еще раз напомним, что расщепление по законам Менделя – явление статистическое и соблюдается только в случае наличия достаточно большого количества животных и в случае, когда аллели изучаемых генов не влияют на жизнеспособность потомства. Если эти условия не соблюдаются, в потомстве будут наблюдаться отклонения от менделевских соотношений.

Поделиться